我知道这个问题之前已经有人问过,但那些解决方案似乎都不适用于我的问题。
我正在尝试使用逻辑回归实现一个基本的二元分类算法,以识别图像是猫还是狗。
我认为我对数据的结构是正确的,我在初始密集层之前添加了一个平铺层,我认为它接受了正确的形状,然后我再通过两个密集层,最后一层只有2个输出(据我所知,这对于像这样的二元分类是正确的做法)。
请查看我的代码,并建议我如何做得更好,以达到以下目的:
1.) 使预测输出变化(不总是选择一个或另一个)
2.) 使我的准确率和损失在第二个周期后发生变化。
我已经尝试了以下方法:
– 改变密集层的数量及其参数
– 改变数据集的大小(因此在处理文件时使用了计数变量)
– 改变周期数
– 将模型类型从sgd改为adam
数据集初始化
模型设置
from keras.layers import Dense, Flattenfrom keras.models import Sequentialshape = xTest.shapemodel = Sequential([Flatten(), Dense(100, activation = 'relu', input_shape = shape), Dense(50, activation = 'relu'), Dense(2, activation = 'softmax')])model.compile(loss = keras.losses.binary_crossentropy, optimizer = keras.optimizers.sgd(), metrics = ['accuracy'])model.fit(xTrain, yTrain, epochs=3, verbose=1, validation_data=(xTest, yTest))model.summary()
输出结果为:
Train on 150 samples, validate on 50 samplesEpoch 1/3150/150 [==============================] - 1s 6ms/step - loss: 7.3177 - acc: 0.5400 - val_loss: 1.9236 - val_acc: 0.8800Epoch 2/3150/150 [==============================] - 0s 424us/step - loss: 3.4198 - acc: 0.7867 - val_loss: 1.9236 - val_acc: 0.8800Epoch 3/3150/150 [==============================] - 0s 430us/step - loss: 3.4198 - acc: 0.7867 - val_loss: 1.9236 - val_acc: 0.8800_________________________________________________________________Layer (type) Output Shape Param # =================================================================flatten_13 (Flatten) (None, 10000) 0 _________________________________________________________________dense_45 (Dense) (None, 100) 1000100 _________________________________________________________________dense_46 (Dense) (None, 50) 5050 _________________________________________________________________dense_47 (Dense) (None, 2) 102 =================================================================Total params: 1,005,252Trainable params: 1,005,252Non-trainable params: 0
预测
y_pred = model.predict(xTest)for y in y_pred: print(y)
输出结果为:
[1. 0.][1. 0.][1. 0.]...[1. 0.]
回答:
解决这个问题的方法有很多……哈哈,真是双关语。我不知道你的方法是否有效。所以假设你的数据和标签是正确的,那么我认为问题出在你的数据收集和模型构建上。
首先,我认为你的数据量不足。大多数这些二元分类模型都是基于超过1000张图片构建的。你使用的图片数量要少得多。其次,你只进行了3个周期,这完全不够。对于你需要的图片数量,我建议至少进行50个周期。但这需要通过试错来确定合适的数量,以及是否存在过拟合问题。
这是我用来构建二元分类模型的方法。
from sklearn.preprocessing import LabelEncoderfrom sklearn.model_selection import train_test_splitfrom keras.models import Sequentialfrom keras.layers import Activationfrom keras.optimizers import SGDfrom keras.layers import Densefrom keras.utils import np_utilsimport numpy as npimport cv2data = []labels = []imageSize = 32# Do whatever you gotta do to create a folder of flatten/resized images# and another labels list with indexes that match the index of pitcurefor image in folder: imagePath = 'path/to/image/' imageLabel = 'whatever_label' image = cv2.imread(imagePath) features = cv2.resize(image, imageSize).flatten(image) data.append(features) labels.append(imageLabel)# Encode the labelslabelEncoder = LabelEncoder()labels = labelEncoder.fit_transforma(labels)# Scale the image to [0, 1]data = np.array(data) / 255.0# Generate labels as [0, 1] instead of ['dog', 'cat']labels = np_utils.to_categorical(labels, 2)# Split data(trainData, testData, trainLabels, testLabels) = train_test_split(data, labels, test_size = 0.25, random_state = 42)# Construct Modelmodel = Sequential()model.add(Dense(768, input_dim = imageSize * imageSize * 3, init = 'uniform', activation = 'relu'))model.add(Dense(384, activation = 'relu', kernel_initializer = 'uniform'))model.add(Dense(2))model.add(Activation('softmax'))# Compilesgd = SGD(lr=0.01)model.compile(loss = 'binary_crossentropy', optimizer = sgd, metrics = ['accuracy'])model.fit(trainData, trainLabels, epochs = 50, batch_size = 128, verbose = 1)# Determine Accuracy and loss(loss, accuracy) = model.evaluate(testData, testLabels, batch_size = 128, verbose = 1)print('[INFO] loss={:.4f}, accuracy: {:.4f}%'.format(loss, accuracy * 100))
希望这对你有帮助!