为什么我的回调函数在Tensorflow中不被调用?

下面是我的Tensorflow和Python代码,当准确率达到99%时会通过回调函数结束训练。但回调函数并未被调用。问题出在哪里?

def train_mnist():    class myCallback(tf.keras.callbacks.Callback):        def on_epoc_end(self, epoch,logs={}):            if (logs.get('accuracy')>0.99):                print("Reached 99% accuracy so cancelling training!")                self.model.stop_training=True    mnist = tf.keras.datasets.mnist    (x_train, y_train),(x_test, y_test) = mnist.load_data(path=path)    x_train= x_train/255.0    x_test= x_test/255.0    callbacks=myCallback()    model = tf.keras.models.Sequential([        # YOUR CODE SHOULD START HERE        tf.keras.layers.Flatten(input_shape=(28, 28)),        tf.keras.layers.Dense(256, activation=tf.nn.relu),        tf.keras.layers.Dense(10, activation=tf.nn.softmax)    ])    model.compile(optimizer='adam',                  loss='sparse_categorical_crossentropy',                  metrics=['accuracy'])    # model fitting    history = model.fit(x_train,y_train, epochs=10,callbacks=[callbacks])     # model fitting    return history.epoch, history.history['acc'][-1]

回答:

你拼错了epoch,而且你应该返回accuracy而不是acc

from tensorflow.keras.layers import Input, Dense, Add, Activation, Flattenfrom tensorflow.keras.models import Model, Sequentialimport tensorflow as tfimport numpy as npimport randomfrom tensorflow.python.keras.layers import Input, GaussianNoise, BatchNormalizationdef train_mnist():  class myCallback(tf.keras.callbacks.Callback):      def on_epoch_end(self, epoch,logs={}):          print(logs.get('accuracy'))          if (logs.get('accuracy')>0.9):              print("Reached 90% accuracy so cancelling training!")              self.model.stop_training=True  mnist = tf.keras.datasets.mnist  (x_train, y_train),(x_test, y_test) = mnist.load_data()  x_train= x_train/255.0  x_test= x_test/255.0  callbacks=myCallback()  model = tf.keras.models.Sequential([      # YOUR CODE SHOULD START HERE      tf.keras.layers.Flatten(input_shape=(28, 28)),      tf.keras.layers.Dense(256, activation=tf.nn.relu),      tf.keras.layers.Dense(10, activation=tf.nn.softmax)  ])  model.compile(optimizer='adam',                loss='sparse_categorical_crossentropy',                metrics=['accuracy'])  # model fitting  history = model.fit(x_train,y_train, epochs=10,callbacks=[callbacks])   # model fitting  return history.epoch, history.history['accuracy'][-1]train_mnist()
Epoch 1/101859/1875 [============================>.] - ETA: 0s - loss: 0.2273 - accuracy: 0.93580.93586665391922Reached 90% accuracy so cancelling training!1875/1875 [==============================] - 3s 2ms/step - loss: 0.2265 - accuracy: 0.9359([0], 0.93586665391922)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注