为什么LlamaCPP在推理过程中会冻结?

我使用以下代码尝试通过LlamaIndex库从LlamaCPP获取响应。我的模型存储在本地gguf文件中。由于我的VRAM有限,我尝试在CPU上进行推理。我的程序会打印出初始化代码(如下所示),但随后会无限期挂起且不产生任何响应。

import jsonfrom llama_index.llms.llama_cpp import LlamaCPPMODEL_URL = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q4_0.gguf"MODEL_PATH = Nonewith open("./paths.json", "r") as f:    paths = json.load(f)    if "llama-2-13b-chat" in paths:        MODEL_URL = None        MODEL_PATH = paths["llama-2-13b-chat"]llm = LlamaCPP(    model_url=MODEL_URL,    model_path=MODEL_PATH,    temperature=0.1,    max_new_tokens=256,    context_window=3900,    model_kwargs={"n_gpu_layers": 0}, # 使用CPU进行推理    verbose=True,)response = llm.complete("Hello, how are you?")print(str(response))

输出:初始化后,无限期挂起。我期望的输出是打印出详细的初始化信息,然后是LLM的响应,最后终止程序。

llama_model_loader: loaded meta data with 19 key-value pairs and 363 tensors from ../models/llama-2-13b-chat.Q4_0.gguf (version GGUF V2)llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.llama_model_loader: - kv   0:                       general.architecture str              = llamallama_model_loader: - kv   1:                               general.name str              = LLaMA v2llama_model_loader: - kv   2:                       llama.context_length u32              = 4096llama_model_loader: - kv   3:                     llama.embedding_length u32              = 5120llama_model_loader: - kv   4:                          llama.block_count u32              = 40llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 13824llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 40llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 40llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010llama_model_loader: - kv  10:                          general.file_type u32              = 2llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llamallama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2llama_model_loader: - kv  17:            tokenizer.ggml.unknown_token_id u32              = 0llama_model_loader: - kv  18:               general.quantization_version u32              = 2llama_model_loader: - type  f32:   81 tensorsllama_model_loader: - type q4_0:  281 tensorsllama_model_loader: - type q6_K:    1 tensorsllm_load_vocab: special tokens definition check successful ( 259/32000 ).llm_load_print_meta: format           = GGUF V2llm_load_print_meta: arch             = llamallm_load_print_meta: vocab type       = SPMllm_load_print_meta: n_vocab          = 32000llm_load_print_meta: n_merges         = 0llm_load_print_meta: n_ctx_train      = 4096llm_load_print_meta: n_embd           = 5120llm_load_print_meta: n_head           = 40llm_load_print_meta: n_head_kv        = 40llm_load_print_meta: n_layer          = 40llm_load_print_meta: n_rot            = 128llm_load_print_meta: n_embd_head_k    = 128llm_load_print_meta: n_embd_head_v    = 128llm_load_print_meta: n_gqa            = 1llm_load_print_meta: n_embd_k_gqa     = 5120llm_load_print_meta: n_embd_v_gqa     = 5120llm_load_print_meta: f_norm_eps       = 0.0e+00llm_load_print_meta: f_norm_rms_eps   = 1.0e-05llm_load_print_meta: f_clamp_kqv      = 0.0e+00llm_load_print_meta: f_max_alibi_bias = 0.0e+00llm_load_print_meta: f_logit_scale    = 0.0e+00llm_load_print_meta: n_ff             = 13824llm_load_print_meta: n_expert         = 0llm_load_print_meta: n_expert_used    = 0llm_load_print_meta: causal attn      = 1llm_load_print_meta: pooling type     = 0llm_load_print_meta: rope type        = 0llm_load_print_meta: rope scaling     = linearllm_load_print_meta: freq_base_train  = 10000.0llm_load_print_meta: freq_scale_train = 1llm_load_print_meta: n_yarn_orig_ctx  = 4096llm_load_print_meta: rope_finetuned   = unknownllm_load_print_meta: ssm_d_conv       = 0llm_load_print_meta: ssm_d_inner      = 0llm_load_print_meta: ssm_d_state      = 0llm_load_print_meta: ssm_dt_rank      = 0llm_load_print_meta: model type       = 13Bllm_load_print_meta: model ftype      = Q4_0llm_load_print_meta: model params     = 13.02 Bllm_load_print_meta: model size       = 6.86 GiB (4.53 BPW) llm_load_print_meta: general.name     = LLaMA v2llm_load_print_meta: BOS token        = 1 '<s>'llm_load_print_meta: EOS token        = 2 '</s>'llm_load_print_meta: UNK token        = 0 '<unk>'llm_load_print_meta: LF token         = 13 '<0x0A>'llm_load_tensors: ggml ctx size =    0.18 MiBllm_load_tensors:        CPU buffer size =  7023.90 MiB...................................................................................................llama_new_context_with_model: n_ctx      = 4096llama_new_context_with_model: n_batch    = 512llama_new_context_with_model: n_ubatch   = 512llama_new_context_with_model: flash_attn = 0llama_new_context_with_model: freq_base  = 10000.0llama_new_context_with_model: freq_scale = 1llama_kv_cache_init:        CPU KV buffer size =  3200.00 MiBllama_new_context_with_model: KV self size  = 3200.00 MiB, K (f16): 1600.00 MiB, V (f16): 1600.00 MiBllama_new_context_with_model:        CPU  output buffer size =     0.12 MiBllama_new_context_with_model:        CPU compute buffer size =   368.01 MiBllama_new_context_with_model: graph nodes  = 1286llama_new_context_with_model: graph splits = 1AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.context_length': '4096', 'general.name': 'LLaMA v2', 'llama.embedding_length': '5120', 'llama.feed_forward_length': '13824', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.dimension_count': '128', 'llama.attention.head_count': '40', 'tokenizer.ggml.bos_token_id': '1', 'llama.block_count': '40', 'llama.attention.head_count_kv': '40', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '2'}Using fallback chat format: llama-2

我的RAM使用量最终达到9.5GB/16,我的CPU使用率约为50%。如果有任何关于为什么会发生这种情况的见解,将不胜感激。


回答:

尝试使用流式输出。模型正在生成响应,但没有GPU的情况下速度非常慢。总的来说,13B模型相当大,如果它们占用超过10GB的RAM也是正常的。

response_iter = llm.stream_complete("Can you write me a poem about fast cars?")for response in response_iter:    print(response.delta, end="", flush=True)

还可以考虑使用更小的模型来加快输出速度:

MODEL_URL = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/resolve/main/llama-2-7b-chat.Q4_K_M.gguf"

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注