我在使用MNIST数据集和MLP分类器进行数字分类时观察到一种非常奇怪的行为。单层分类器的表现优于多层分类器。而在单层中增加神经元数量似乎能提高准确率。为什么多层分类器的表现不如单层?这是我的代码:
param_grid={'hidden_layer_sizes':[400,300,200,100,70,50,20,10]}grid=GridSearchCV(MLPClassifier(random_state=1),param_grid,cv=3,scoring='accuracy')grid.fit(train_data.iloc[:,1:],train_data.iloc[:,0])grid.grid_scores_
输出:
[mean: 0.97590, std: 0.00111, params: {'hidden_layer_sizes': 400}, mean: 0.97300, std: 0.00300, params: {'hidden_layer_sizes': 300}, mean: 0.97271, std: 0.00065, params: {'hidden_layer_sizes': 200}, mean: 0.97052, std: 0.00143, params: {'hidden_layer_sizes': 100}, mean: 0.96507, std: 0.00262, params: {'hidden_layer_sizes': 70}, mean: 0.96448, std: 0.00150, params: {'hidden_layer_sizes': 50}, mean: 0.94531, std: 0.00378, params: {'hidden_layer_sizes': 20}, mean: 0.92945, std: 0.00320, params: {'hidden_layer_sizes': 10}]
对于多层的情况:
param_grid={'hidden_layer_sizes':[[200],[200,100],[200,100,50],[200,100,50,20],[200,100,50,20,10]]}grid=GridSearchCV(MLPClassifier(random_state=1),param_grid,cv=3,scoring='accuracy')grid.fit(train_data.iloc[:,1:],train_data.iloc[:,0])grid.grid_scores_
输出:
[mean: 0.97271, std: 0.00065, params: {'hidden_layer_sizes': [200]}, mean: 0.97255, std: 0.00325, params: {'hidden_layer_sizes': [200, 100]}, mean: 0.97043, std: 0.00199, params: {'hidden_layer_sizes': [200, 100, 50]}, mean: 0.96755, std: 0.00173, params: {'hidden_layer_sizes': [200, 100, 50, 20]}, mean: 0.96086, std: 0.00511, params: {'hidden_layer_sizes': [200, 100, 50, 20, 10]}]
关于数据集:28*28像素的手写数字图像。
回答:
在我看来,你的模型可能出现了过拟合。你可以通过比较训练分数(使用参数return_train_score=True
)和测试分数来验证这一点。
如果已经出现了过拟合,那么使你的神经网络更深或增加隐藏层的单元数可能会使情况变得更糟。因此,尝试获取更多数据和/或找到合适的alpha
(正则化参数)来改善你的模型性能。