维度必须相等,但对于’SparseSoftmaxCrossEntropyWithLogits’来说,实际维度分别是1和128

我在尝试使用TensorFlow中的常规神经网络读取png格式的图像时遇到了问题。我在读取数据步骤中无法处理标签,因此出现了错误。

我首先认为问题出在我创建批处理队列和洗牌时。这在tf.train.shuffle_batch中出现了问题,它期望的是1-D的输入,但实际上得到了3-D的形状。

我修复了这个问题,但随后在损失函数中又出现了另一个错误

子代码在这里:链接

问题是:

Traceback (most recent call last): File “SVHN.py”, line 280, in tf.app.run() File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/platform/app.py”, line 48, in run _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File “SVHN.py”, line 269, in main train_op = SVHN_architecture_AND_optimize() File “SVHN.py”, line 203, in SVHN_architecture_AND_optimize cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels) File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/nn_ops.py”, line 1742, in sparse_softmax_cross_entropy_with_logits precise_logits, labels, name=name) File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_nn_ops.py”, line 2418, in _sparse_softmax_cross_entropy_with_logits features=features, labels=labels, name=name) File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py”, line 768, in apply_op op_def=op_def) File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py”, line 2338, in create_op set_shapes_for_outputs(ret) File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py”, line 1719, in set_shapes_for_outputs shapes = shape_func(op) File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py”, line 1669, in call_with_requiring return call_cpp_shape_fn(op, require_shape_fn=True) File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/common_shapes.py”, line 610, in call_cpp_shape_fn debug_python_shape_fn, require_shape_fn) File “/home/ashwaq/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/common_shapes.py”, line 676, in _call_cpp_shape_fn_impl raise ValueError(err.message) ValueError: Dimensions must be equal, but are 1 and 128 for ‘SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits’ (op: ‘SparseSoftmaxCrossEntropyWithLogits’) with input shapes: [1,10], [128].


回答:

错误的原因是只有1张输入图像被传递给了SparseSoftmaxEntropyWithLogits,而不是一个完整的批次。导致问题的是这行代码:

# 将单个输入的`image`更改为批处理的`images`images = tf.reshape(images, [-1, IMAGE_SIZE, IMAGE_SIZE, depth]) 

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注