未初始化变量在TensorFlow中

我正在尝试编写一个机器学习程序。最初的想法是训练一个模型(在 q_model 中定义),该模型可以使用RMSProp进行训练。我在这里报告了一个非常简化的代码版本,但它无法正常工作。

错误信息如下:

Traceback (most recent call last):  File "/home/samuele/Projects/GBFQI/test/tf_test.py", line 45, in <module>    print sess.run({'train':train}, feed_dict={'x:0':x[indx],'a:0':a[indx],'y:0':y[indx]})  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 789, in run    run_metadata_ptr)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 997, in _run    feed_dict_string, options, run_metadata)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1132, in _do_run    target_list, options, run_metadata)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1152, in _do_call    raise type(e)(node_def, op, message)tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value b/RMSProp     [[Node: RMSProp/update_b/ApplyRMSProp = ApplyRMSProp[T=DT_DOUBLE, _class=["loc:@b"], use_locking=false, _device="/job:localhost/replica:0/task:0/cpu:0"](b, b/RMSProp, b/RMSProp_1, RMSProp/update_b/Cast, RMSProp/update_b/Cast_1, RMSProp/update_b/Cast_2, RMSProp/update_b/Cast_3, gradients/add_grad/tuple/control_dependency_1)]]Caused by op u'RMSProp/update_b/ApplyRMSProp', defined at:  File "/home/samuele/Projects/GBFQI/test/tf_test.py", line 38, in <module>    train = optimizer.minimize(error)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 325, in minimize    name=name)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 456, in apply_gradients    update_ops.append(processor.update_op(self, grad))  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 97, in update_op    return optimizer._apply_dense(g, self._v)  # pylint: disable=protected-access  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/rmsprop.py", line 140, in _apply_dense    use_locking=self._use_locking).op  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/gen_training_ops.py", line 449, in apply_rms_prop    use_locking=use_locking, name=name)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op    op_def=op_def)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2506, in create_op    original_op=self._default_original_op, op_def=op_def)  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1269, in __init__    self._traceback = _extract_stack()FailedPreconditionError (see above for traceback): Attempting to use uninitialized value b/RMSProp     [[Node: RMSProp/update_b/ApplyRMSProp = ApplyRMSProp[T=DT_DOUBLE, _class=["loc:@b"], use_locking=false, _device="/job:localhost/replica:0/task:0/cpu:0"](b, b/RMSProp, b/RMSProp_1, RMSProp/update_b/Cast, RMSProp/update_b/Cast_1, RMSProp/update_b/Cast_2, RMSProp/update_b/Cast_3, gradients/add_grad/tuple/control_dependency_1)]]

我无法解释这个错误,因为模型已经初始化了,实际上如果我运行

print sess.run(q_model(x,a))

模型按预期工作,没有引发任何错误。

编辑:

我的问题与这个问题不同。我已经知道

init = tf.initialize_all_variables()sess = tf.Session()sess.run(init)

但我不知道在优化后也应该执行这些操作。


回答:

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注