ValueError: pos_label=1 不是有效的标签:array([‘neg’, ‘pos’], dtype=’

我在尝试获取召回率评分时遇到了这个错误。

X_test = test_pos_vec + test_neg_vecY_test = ["pos"] * len(test_pos_vec) + ["neg"] * len(test_neg_vec)recall_average = recall_score(Y_test, y_predict, average="binary")print(recall_average)

这会导致以下结果:

    C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:1030: FutureWarning: 逐元素比较失败;返回标量而不是在未来将执行逐元素比较  if pos_label not in present_labels:Traceback (most recent call last):  File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>    main()  File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main    evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)  File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model    recall_average = recall_score(Y_test, y_predict, average="binary")  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score    sample_weight=sample_weight)  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1036, in precision_recall_fscore_support    (pos_label, present_labels))ValueError: pos_label=1 is not a valid label: array(['neg', 'pos'],      dtype='<U3')

我尝试通过以下方式将’pos’转换为1,将’neg’转换为0:

for i in range(len(Y_test)):     if 'neg' in Y_test[i]:         Y_test[i] = 0     else:         Y_test[i] = 1

但这导致了另一个错误:

    C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:181: FutureWarning: 逐元素比较失败;返回标量而不是在未来将执行逐元素比较  score = y_true == y_predTraceback (most recent call last):  File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>    main()  File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main    evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)  File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model    recall_average = recall_score(Y_test, y_predict, average="binary")  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score    sample_weight=sample_weight)  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1026, in precision_recall_fscore_support    present_labels = unique_labels(y_true, y_pred)  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\utils\multiclass.py", line 103, in unique_labels    raise ValueError("Mix of label input types (string and number)")ValueError: Mix of label input types (string and number)

我正在尝试获取以下指标:准确率、精确率、召回率、F测量值。使用 average='weighted',我得到了相同的结果:准确率=召回率。我猜这不正确,所以我将 average 改为 'binary',但出现了这些错误。有什么建议吗?


回答:

recall_average = recall_score(Y_test, y_predict, average="binary", pos_label="neg")

使用 "neg""pos" 作为 pos_label,这个错误就不会再次出现。

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注