ValueError: pos_label=1 不是有效的标签:array([‘neg’, ‘pos’], dtype=’

我在尝试获取召回率评分时遇到了这个错误。

X_test = test_pos_vec + test_neg_vecY_test = ["pos"] * len(test_pos_vec) + ["neg"] * len(test_neg_vec)recall_average = recall_score(Y_test, y_predict, average="binary")print(recall_average)

这会导致以下结果:

    C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:1030: FutureWarning: 逐元素比较失败;返回标量而不是在未来将执行逐元素比较  if pos_label not in present_labels:Traceback (most recent call last):  File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>    main()  File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main    evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)  File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model    recall_average = recall_score(Y_test, y_predict, average="binary")  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score    sample_weight=sample_weight)  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1036, in precision_recall_fscore_support    (pos_label, present_labels))ValueError: pos_label=1 is not a valid label: array(['neg', 'pos'],      dtype='<U3')

我尝试通过以下方式将’pos’转换为1,将’neg’转换为0:

for i in range(len(Y_test)):     if 'neg' in Y_test[i]:         Y_test[i] = 0     else:         Y_test[i] = 1

但这导致了另一个错误:

    C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:181: FutureWarning: 逐元素比较失败;返回标量而不是在未来将执行逐元素比较  score = y_true == y_predTraceback (most recent call last):  File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>    main()  File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main    evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)  File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model    recall_average = recall_score(Y_test, y_predict, average="binary")  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score    sample_weight=sample_weight)  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1026, in precision_recall_fscore_support    present_labels = unique_labels(y_true, y_pred)  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\utils\multiclass.py", line 103, in unique_labels    raise ValueError("Mix of label input types (string and number)")ValueError: Mix of label input types (string and number)

我正在尝试获取以下指标:准确率、精确率、召回率、F测量值。使用 average='weighted',我得到了相同的结果:准确率=召回率。我猜这不正确,所以我将 average 改为 'binary',但出现了这些错误。有什么建议吗?


回答:

recall_average = recall_score(Y_test, y_predict, average="binary", pos_label="neg")

使用 "neg""pos" 作为 pos_label,这个错误就不会再次出现。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注