ValueError在分类交叉熵损失形状中

我在构建一个多类别CNN模型时,无法编译模型,因为出现了损失形状错误。

  • 输出层和标签都应该有正确的形状;标签应为(m, 1, 3),而最终的全连接层应包含3个神经元,并使用softmax激活函数
  • 损失函数为’categorical_crossentropy’

导致以下错误信息:

Traceback (most recent call last):  File "train.py", line 70, in <module>    model.fit(X, y, batch_size=batch_size, epochs=10, verbose=2, use_multiprocessing=True)  File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 819, in fit    use_multiprocessing=use_multiprocessing)  File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 235, in fit    use_multiprocessing=use_multiprocessing)  File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 593, in _process_training_inputs    use_multiprocessing=use_multiprocessing)  File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_v2.py", line 646, in _process_inputs    x, y, sample_weight=sample_weights)  File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 2383, in _standardize_user_data    batch_size=batch_size)  File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training.py", line 2489, in _standardize_tensors    y, self._feed_loss_fns, feed_output_shapes)  File "/home/554282/.local/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/training_utils.py", line 810, in check_loss_and_target_compatibility    ' while using as loss `' + loss_name + '`. 'ValueError: A target array with shape (8, 1, 3) was passed for an output of shape (None, 3) while using as loss `categorical_crossentropy`. This loss expects targets to have the same shape as the output.

回答:

custom_one_hot函数返回一个[M, 1, 3]数组。你应该将其重塑为[M, 3],因为CNN的输出是[M, 3]。这里的M是批量大小。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注