ValueError: 使用model.fit时未为任何变量提供梯度

我正在尝试使用两个预训练模型(resnet和mobilenet)提取的特征作为输入来训练一个Keras的功能模型。我需要使用softmax层将图像分类为1、2或3类别。

我的model.fit函数返回以下错误:

ValueError: No gradients provided for any variable: ['dense_66/kernel:0', 'dense_66/bias:0', 'dense_64/kernel:0', 'dense_64/bias:0', 'dense_67/kernel:0', 'dense_67/bias:0', 'dense_65/kernel:0', 'dense_65/bias:0', 'dense_68/kernel:0', 'dense_68/bias:0', 'dense_69/kernel:0', 'dense_69/bias:0', 'dense_70/kernel:0', 'dense_70/bias:0'].

这是相关代码部分:

创建数据集

def datasetgenerator(url,BATCH_SIZE,IMG_SIZE):  data=image_dataset_from_directory(url,                                             shuffle=True,                                             batch_size=BATCH_SIZE,                                             image_size=IMG_SIZE,                                             label_mode='int'                                                                                          )  return dataBATCH_SIZE = 20IMG_SIZE = (160, 160)train_dir='wound_dataset2/train'train_dataset = datasetgenerator(url=train_dir,BATCH_SIZE=BATCH_SIZE,IMG_SIZE= IMG_SIZE)val_dir='wound_dataset2/val'validation_dataset = datasetgenerator(url=val_dir,BATCH_SIZE=BATCH_SIZE,IMG_SIZE= IMG_SIZE)test_dir='wound_dataset2/test'test_dataset = datasetgenerator(url=test_dir,BATCH_SIZE=BATCH_SIZE,IMG_SIZE= IMG_SIZE)print(train_dataset)

特征提取

mobilenet_features = np.empty([20, 1280])resnet_features = np.empty([20, 2048])for data in train_dataset:    image_batch, label_batch = data    image_batch = data_augmentation(image_batch)    preprocess_input_image_resnet = preprocess_input_resnet(image_batch)    preprocess_input_image_mobilenet = preprocess_input_mobilenet(image_batch)    feature_batch_resnet = base_model_resnet(preprocess_input_image_resnet)    feature_batch_average_resnet = global_average_layer(feature_batch_resnet)    feature_batch_mobilenet = base_model_mobilenet(preprocess_input_image_mobilenet)    feature_batch_average_mobilenet = global_average_layer(feature_batch_mobilenet)    mobilenet_features = np.concatenate((mobilenet_features, np.array(feature_batch_average_mobilenet)))    resnet_features = np.concatenate((resnet_features, np.array(feature_batch_average_resnet)))

模型生成

from tensorflow.keras.layers import concatenate# define two sets of inputsinputA = tf.keras.Input(shape=(1280,))inputB = tf.keras.Input(shape=(2048,))# the first branch operates on the first inputx = tf.keras.layers.Dense(8, activation="relu")(inputA)x = tf.keras.layers.Dense(4, activation="relu")(x)x = tf.keras.Model(inputs=inputA, outputs=x)# the second branch opreates on the second inputy = tf.keras.layers.Dense(64, activation="relu")(inputB)y = tf.keras.layers.Dense(32, activation="relu")(y)y = tf.keras.layers.Dense(4, activation="relu")(y)y = tf.keras.Model(inputs=inputB, outputs=y)# combine the output of the two branchescombined = concatenate([x.output, y.output])fc_layers = [1024, 1024]dropout = 0.5# apply a FC layer and then a regression prediction on the# combined outputsz = Flatten()(combined)for fc in fc_layers:    # New FC layer, random init    z = Dense(fc, activation='relu')(z)     z = Dropout(dropout)(z)# New softmax layerpredictions = Dense(3, activation='softmax')(z)# our model will accept the inputs of the two branches and# then output a single valuemodel = tf.keras.Model(inputs=[x.input, y.input], outputs=z)

训练

model.compile(optimizer=tf.keras.optimizers.Adam(1e-3),              loss= tf.keras.losses.CategoricalCrossentropy(from_logits=True),              metrics=['accuracy'])history = model.fit((mobilenet_features, resnet_features), batch_size=20, epochs=10)

我正在尝试这种方法来提高我使用迁移学习所获得的准确性。任何帮助将不胜感激。


回答:

z = Flatten()(combined)z = Dense(fc, activation='relu')(z) z = Dropout(dropout)(z)z = Dense(fc, activation='relu')(z) z = Dropout(dropout)(z)predictions = Dense(3, activation='softmax')(z)# use the prediction as output layermodel = tf.keras.Model(inputs=[x.input, y.input], outputs=predictions)#add target tensor to the fit methodhistory = model.fit((mobilenet_features, resnet_features),youTarget, batch_size=20, epochs=10)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注