ValueError: 期望的最小维度数为3,但发现的维度数为2

我正在尝试将输入分类到不同的类别中。

数据的形状如下:

df_train.shape: (17980, 380)df_validation.shape: (17980, 380)

然而,当我运行代码时,出现了以下错误:

ValueError: 层conv1d的输入0与层不兼容:期望的最小维度数为3,但发现的维度数为2。接收到的完整形状为:[32, 380]

我们如何修复这个错误?


回答:

Conv1D接受的输入形状为:

3+维张量,形状为:batch_shape + (steps, input_dim)

如果你的数据只有2维,可以添加一个虚拟维度:

df_train = df_train[..., None]df_validation = df_validation[..., None]

同时相应地修改batch_input_shape=(32, 1, 380)为:batch_input_shape=(32, 380, 1),或者完全省略它

其他更改(基于这个虚拟数据):

df_train = np.random.normal(size=(17980, 380))df_validation = np.random.normal(size=(17980, 380))df_train = df_train[..., None]df_validation = df_validation[..., None]y_train = np.random.normal(size=(17980, 1))y_validation = np.random.normal(size=(17980, 1))#train,test = train_test_split(df, test_size=0.20, random_state=0)    batch_size=32epochs=5    model = Sequential()model.add((Conv1D(filters=5, kernel_size=2, activation='relu', padding='same')))model.add((MaxPooling1D(pool_size=2)))model.add(LSTM(50, return_sequences=True))model.add(LSTM(10))model.add(Dense(1))adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0)model.compile(optimizer=adam, loss='mse', metrics=['mae', 'mape', 'acc'])callbacks = [EarlyStopping('val_loss', patience=3)]model.fit(df_train, df_validation, batch_size=batch_size)print(model.summary())

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注