我正在尝试计算两张图像之间的l2_loss
并获取它们的gradient
。这里是我的代码片段:
with tf.name_scope("train"): X = tf.placeholder(tf.float32, [1, None, None, None], name='X') y = tf.placeholder(tf.float32, [1, None, None, None], name='y') Z = tf.nn.l2_loss(X - y, name="loss") step_loss = tf.reduce_mean(Z) optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(step_loss)init = tf.global_variables_initializer()with tf.Session() as sess: init.run() content = tf.gfile.FastGFile('cat.0.jpg', 'rb').read() noise = tf.gfile.FastGFile('color_img.jpg', 'rb').read() loss_append = [] for epoch in range(10): for layer in layers: c = sess.run(layer, feed_dict={input_img: content}) n = sess.run(layer, feed_dict={input_img: noise}) sess.run(training_op, feed_dict={X: c, y: n})
但它给出了以下错误:
Traceback (most recent call last): File "/home/noise_image.py", line 68, in <module> training_op = optimizer.minimize(lossss) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training /optimizer.py", line 315, in minimize grad_loss=grad_loss) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training /optimizer.py", line 380, in compute_gradients raise ValueError("No variables to optimize.")ValueError: No variables to optimize.
如何解决这个问题?
回答:
您构建的图中没有变量节点。您也在尝试在没有变量的情况下最小化损失函数。
最小化指的是为数学函数(成本函数)的变量找到一组值,当这些值代入函数时,得到的最小可能值(至少是局部最小值,因为我们通常处理的是非凸函数)。
因此,当您运行代码时,编译器抱怨您的成本函数中没有变量。澄清一下,placeholder
指的是在运行时用于向图的各种输入提供值的对象。
要解决这个问题,您需要重新考虑您试图构建的图。您必须定义变量,类似这样:(忽略与此问题无关的代码部分)
with tf.name_scope("train"): X = tf.placeholder(tf.float32, [1, 224, 224, 3], name='X') y = tf.placeholder(tf.float32, [1, 224, 224, 3], name='y') X_var = tf.get_variable('X_var', dtype = tf.float32, initializer = tf.random_normal((1, 224, 224, 3))) y_var = tf.get_variable('y_var', dtype = tf.float32, initializer = tf.random_normal((1, 224, 224, 3))) Z = tf.nn.l2_loss((X_var - X) ** 2 + (y_var - y) ** 2, name="loss") step_loss = tf.reduce_mean(Z) optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(step_loss)...with tf.Session() as sess: .... sess.run(training_op, feed_dict={X: c, y: n})