ValueError: 检查输入时出错:预期 conv2d_1_input 有 4 个维度,但得到的数组形状为 (999, 12, 1),在模型拟合时发生错误

我正在我的数据集上构建一个二维卷积网络。我在测试集上运行了下面的代码:

#reproducible codefrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, Flattenfrom keras.utils import np_utilsfrom keras import optimizersfrom sklearn.metrics import confusion_matriximport numpy as npimport timefrom keras.layers.convolutional import Conv2Ddata = np.random.rand(1000,22)data.shapetrain_X = data[0:data.shape[0],0:12]train_X.shapetrain_y = data[0:data.shape[0],12:data.shape[1]]train_y.shapetrain_X = train_X.reshape((train_X.shape[0], train_X.shape[1], 1))train_X.shapeneurons = 10model = Sequential()model.add(Conv2D(filters=64,input_shape=train_X.shape, activation='relu',kernel_size = 3))model.add(Flatten())model.add(Dense(neurons,activation='relu')) # first hidden layermodel.add(Dense(neurons, activation='relu')) # second hidden layermodel.add(Dense(neurons, activation='relu')) # third hidden layermodel.add(Dense(10, activation='softmax'))sgd = optimizers.SGD(lr=0.05, decay=1e-6, momentum=0.95, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])model.summary()model.fit(train_X,train_y, validation_split=0.2, epochs=10, batch_size=100, verbose=0)model.summary()

我的模型运行了一段时间后显示了以下摘要:

Model: "sequential_1"_________________________________________________________________Layer (type)                 Output Shape              Param #================================================================= conv2d_1 (Conv2D)            (None, 997, 10, 64)       640       _________________________________________________________________flatten_1 (Flatten)          (None, 638080)            0_________________________________________________________________dense_1 (Dense)              (None, 10)                6380810_________________________________________________________________dense_2 (Dense)              (None, 10)                110_________________________________________________________________dense_3 (Dense)              (None, 10)                110_________________________________________________________________dense_4 (Dense)              (None, 10)                110=================================================================Total params: 6,381,780Trainable params: 6,381,780Non-trainable params: 0

它在 model.fit 处卡住并抛出了下面的错误。我想知道如何解决这个错误。

Traceback (most recent call last):  File "CNN_test.py", line 65, in <module>    model.fit(train_X,train_y, validation_split=0.2, epochs=10, batch_size=100, verbose=0)  File "/usr/local/lib/python3.6/site-packages/keras/engine/training.py", line 1154, in fit    batch_size=batch_size)  File "/usr/local/lib/python3.6/site-packages/keras/engine/training.py", line 579, in _standardize_user_data    exception_prefix='input')  File "/usr/local/lib/python3.6/site-packages/keras/engine/training_utils.py", line 135, in standardize_input_data    'with shape ' + str(data_shape))ValueError: Error when checking input: expected conv2d_1_input to have 4 dimensions, but got array with shape (999, 12, 1)

回答:

由于你的数据是三维的,你没有理由使用二维卷积层。你需要的是 Conv1D。此外,不要在 input_shape 中包含 n_samples 维度。

from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Dense, Conv1D, Flattenfrom tensorflow.keras import optimizersimport numpy as npdata = np.random.rand(1000,22)train_X = data[0:data.shape[0],0:12]train_X = train_X.reshape((train_X.shape[0], train_X.shape[1], 1))train_y = data[0:data.shape[0],12:data.shape[1]]neurons = 10model = Sequential()model.add(Conv1D(filters=64,input_shape=train_X.shape[1:],     activation='relu',kernel_size = 3))model.add(Flatten())model.add(Dense(neurons,activation='relu')) # first hidden layermodel.add(Dense(10, activation='softmax'))sgd = optimizers.SGD(lr=0.05, decay=1e-6, momentum=0.95, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])history = model.fit(train_X, train_y, validation_split=0.2, epochs=1, batch_size=100)
Train on 800 samples, validate on 200 samples100/800 [==>...........................] - ETA: 2s - loss: 11.4786 - acc: 0.0800800/800 [==============================] - 0s 547us/sample - loss: 55.3883 - acc: 0.1000 

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注