我遇到了标题中提到的错误。我有数千个视频,每个视频有37帧。我使用CNN模型提取了每一帧的特征并保存了它们。我有一个堆叠的LSTM模型:
batch_size = 8features_length = 2048seq_length = 37*batch_sizein_shape = (seq_length, features_length)lstm_model = Sequential()lstm_model.add(LSTM(2048, return_sequences=True, input_shape = in_shape, dropout=0.5))lstm_model.add(Flatten())lstm_model.add(Dense(512, activation='relu'))lstm_model.add(Dropout(0.5))lstm_model.add(Dense(number_of_classes, activation='softmax'))optimizer = Adam(lr=1e-6)lstm_model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics = metrics)lstm_model.fit_generator(generator = generator, steps_per_epoch = train_steps_per_epoch, epochs = nb_epoch, verbose = 1, callbacks=[checkpointer, tb, early_stopper, csv_logger], validation_data=val_generator, validation_steps = val_steps_per_epoch)
我有一个生成器,数据包含所有训练视频。
def generator(data): while 1: X, y = [], [] for _ in range(batch_size): sequence = None sample = random.choice(data) folder_content, folder_name, class_name, video_features_loc = get_video_features(sample) for f in folder_content: image_feature_location = video_features_loc + f feat = get_extracted_feature(image_feature_location) X.append(feat) y.append(get_one_class_rep(class_name)) yield np.array(X), np.array(y)
生成器数据中X的形状是 = (296, 2048, 1)
生成器数据中y的形状是 = (296, 27)
这段代码会抛出错误。我知道有几个类似的问题。我尝试了那里的建议但没有成功。例如,其中一个建议是重塑数组;
X = np.reshape(X, (X.shape[2], X.shape[0], X.shape[1]))
我该如何将我的输入馈送到LSTM中?
提前感谢
回答:
错误信息已经告诉了你所有你需要的信息。
X应该被塑造成 (样本数量, 296, 2048)
– 从X的形状来看,你似乎只有一个样本。
但如果你有37帧,你应该明确地更改你的模型,使其接受: (批次大小, 37, 2048)
– 这里,批次大小似乎是8。
seq_length=37