我是机器学习的新手。我正在尝试训练一个ANN,fit方法产生了一个关于数组形状的错误 “ValueError: Error when checking input: expected dense_1_input to have shape (3,) but got array with shape (2,)”。我知道我有3个输入(年龄,性别,标签)。数据集包含3356行。数据前5行的图片在这里
如下是代码展示:
import pandas as pdfrom keras.models import Sequentialfrom keras.layers import Densefrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.preprocessing import LabelEncoder, OneHotEncoder# 导入数据集dataset = pd.read_csv('Train_data1.csv')X = dataset.iloc[:, 1:3].values # 年龄,性别y = dataset.iloc[:, 3].values #标签# 编码分类数据# 编码独立变量labelencoder_X = LabelEncoder()X[:, 1] = labelencoder_X.fit_transform(X[:, 1])labelencoder_X_1 = LabelEncoder()# 编码依赖变量labelencoder_y = LabelEncoder()y = labelencoder_y.fit_transform(y)print(X.shape) #运行后: (3356, 2)print(y.shape) #运行后: (3356,)# 将数据集拆分为训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)# 特征缩放sc = StandardScaler()X_train = sc.fit_transform(X_train)X_test = sc.transform(X_test)print(X_train.shape)print(y_train.shape)# 初始化ANNmodel = Sequential()model.add(Dense(10, input_dim = 3, activation = 'relu'))model.add(Dense(10, activation = 'relu'))model.add(Dense(2, activation = 'softmax'))# 编译ANNmodel.compile(loss = 'categorical_crossentropy' , optimizer = 'adam' , metrics = ['accuracy'] )# 将ANN拟合到训练集model.fit(X_train, y_train, batch_size = 10, epochs = 100)
运行后的错误:
---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-11-fc00dae1105e> in <module> 1 # 将ANN拟合到训练集----> 2 model.fit(X_train, y_train, batch_size = 10, epochs = 100)~\Anaconda3\lib\site-packages\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs) 950 sample_weight=sample_weight, 951 class_weight=class_weight,--> 952 batch_size=batch_size) 953 # 准备验证数据。 954 do_validation = False~\Anaconda3\lib\site-packages\keras\engine\training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size) 749 feed_input_shapes, 750 check_batch_axis=False, # 不要强制执行批量大小。--> 751 exception_prefix='input') 752 753 if y is not None:~\Anaconda3\lib\site-packages\keras\engine\training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix) 136 ': expected ' + names[i] + ' to have shape ' + 137 str(shape) + ' but got array with shape ' +--> 138 str(data_shape)) 139 return data 140 ValueError: Error when checking input: expected dense_1_input to have shape (3,) but got array with shape (2,)
回答:
Label 是 Y。X 的维度是 2。所以将 input_dim = 3
更改为 input_dim = 2
y_train = to_categorical(y_train)