ValueError: 分类指标无法处理多标签指示器和二元目标的混合

我想使用KerasCLassifier来解决多类分类问题。变量y的值是经过one-hot编码的,例如:

0 1 01 0 01 0 0

这是我的代码:

from keras.models import Sequentialfrom keras.layers import Densefrom keras.wrappers.scikit_learn import KerasClassifier# Function to create model, required for KerasClassifierdef create_model(optimizer='rmsprop', init='glorot_uniform'):    # create model    model = Sequential()    model.add(Dense(2048, input_dim=X_train.shape[1], kernel_initializer=init, activation='relu'))    model.add(Dense(512, kernel_initializer=init, activation='relu'))    model.add(Dense(y_train_onehot.shape[1], kernel_initializer=init, activation='softmax'))    # Compile model    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])    return model# create modelmodel = KerasClassifier(build_fn=create_model, class_weight="balanced", verbose=2)# grid search epochs, batch size and optimizeroptimizers = ['rmsprop', 'adam']epochs = [10, 50]batches = [5, 10, 20]init = ['glorot_uniform', 'normal', 'uniform']param_grid = dict(optimizer=optimizers, epochs=epochs, batch_size=batches, init=init)grid = model_selection.GridSearchCV(estimator=model, param_grid=param_grid, scoring='accuracy')grid_result = grid.fit(X_train], y_train_onehot)

当我运行最后一行代码时,在10个epoch后抛出了以下错误:

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py in accuracy_score(y_true, y_pred, normalize, sample_weight) 174 175 # Compute accuracy for each possible representation –> 176 y_type, y_true, y_pred = _check_targets(y_true, y_pred) 177 check_consistent_length(y_true, y_pred, sample_weight) 178 if y_type.startswith(‘multilabel’):

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py in _check_targets(y_true, y_pred) 79 if len(y_type) > 1: 80 raise ValueError(“Classification metrics can’t handle a mix of {0} ” —> 81 “and {1} targets”.format(type_true, type_pred)) 82 83 # We can’t have more than one value on y_type => The set is no more needed

ValueError: Classification metrics can’t handle a mix of multilabel-indicator and binary targets

当我将accuracy替换为categorical_accuracybalanced_accuracy时,我无法编译模型。


回答:

这是一个工作演示:

import numpy as npfrom sklearn.model_selection import GridSearchCVfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.wrappers.scikit_learn import KerasClassifierN = 100X_train = np.random.rand(N, 4)Y_train = np.random.choice([0,1,2], N, p=[.5, .3, .2])# Function to create model, required for KerasClassifierdef create_model(optimizer='rmsprop', init='glorot_uniform'):    # create model    model = Sequential()    model.add(Dense(2048, input_dim=X_train.shape[1], kernel_initializer=init, activation='relu'))    model.add(Dense(512, kernel_initializer=init, activation='relu'))    model.add(Dense(len(np.unique(Y_train)), kernel_initializer=init, activation='softmax'))    # Compile model    model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizer, metrics=['sparse_categorical_accuracy'])    return model# create modelmodel = KerasClassifier(build_fn=create_model, class_weight="balanced", verbose=2)# grid search epochs, batch size and optimizeroptimizers = ['rmsprop', 'adam']epochs = [10, 50]batches = [5, 10, 20]init = ['glorot_uniform', 'normal', 'uniform']param_grid = dict(optimizer=optimizers, epochs=epochs, batch_size=batches, init=init)grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring='accuracy')grid_result = grid.fit(X_train, Y_train)

PS 请注意sparse_categorical_*损失函数和度量标准的使用。

Related Posts

如何使用Google Protobuf解析、编辑和生成object_detection/pipeline.config文件

我在一个常见的集成学习范式中训练多个模型,目前我在处理…

我的GridSearchCV不起作用,我不知道为什么

大家好,我在使用GridSearchCV时遇到了问题,…

Keras: 两个同时进行的层,其中一个对前一层的输出进行卷积

我想实现这样的模型连接: 输入图像1 -> 卷积层1 …

如何将行数据转换为列数据而不使用独热编码

我有一个如下所示的数据集。 MonthDate Day…

使用 ML Kit 与 NNAPI

我正在尝试在运行 Android 9 的设备上使用新的…

Vowpal Wabbit 可能的哈希冲突

我在VW中生成了一个模型,并且在相同的数据上生成了两个…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注