ValueError: 层dense_24的输入0与层不兼容

构建模型的代码,我遇到的问题是当我尝试加载模型并应用到测试数据集时,会得到以下错误:

learning_rate=0.001epochs = 10decay_rate = learning_rate / epochsdef scheduler(epochs, lr):    if epochs == 15:        lr = 0.001        return lr    else:        lr = lr * tensorflow.math.exp(-0.1)        return lrcallback = keras.callbacks.LearningRateScheduler(scheduler)    wv_model = Sequential()# Add embedding layer # No of output dimenstions is 100 as we embedded with Word2Vec 100dEmbed_Layer = Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=(MAX_SEQUENCE_LENGTH,), trainable=True)# define Inputsreview_input = Input(shape=(MAX_SEQUENCE_LENGTH,),dtype= 'int32',name = 'review_input')review_embedding = Embed_Layer(review_input)Flatten_Layer = Flatten()review_flatten = Flatten_Layer(review_embedding)output_size = 2dense1 = Dense(100,activation='relu')(review_flatten)dense2 = Dense(32,activation='relu')(dense1)predict = Dense(5, activation='softmax')(dense2)wv_model = Model(inputs=[review_input],outputs=[predict])# wv_model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['acc'])opt = keras.optimizers.SGD(lr = 0.01, momentum=0.8, decay=0.0)wv_model.compile(loss='mean_squared_error', optimizer=opt, metrics=['mean_squared_error'])tensorboard = TensorBoard(    log_dir="logs",    histogram_freq=1,    write_graph=True,    write_images=False,    update_freq="epoch",    profile_batch=2,    embeddings_freq=0,    embeddings_metadata=None)keras_callbacks = [tensorboard]checkpoint = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', verbose=1, save_best_only=True)stp = keras.callbacks.EarlyStopping(patience=4)callbacks_list = [checkpoint,stp, tensorboard,callback]wv_model.fit(X_train, y_train, validation_data=(X_test, y_test),           epochs=epochs, batch_size=256,          verbose=1, callbacks=callbacks_list)eval = wv_model.evaluate(X_test, y_test)[1]print(eval)wv_model.load_weights('./models/best_model.h5')print(wv_model.summary())

输出:

Layer (type)                 Output Shape              Param #   =================================================================review_input (InputLayer)    [(None, 100)]             0         _________________________________________________________________embedding_8 (Embedding)      (None, 100, 100)          22228800  _________________________________________________________________flatten_8 (Flatten)          (None, 10000)             0         _________________________________________________________________dense_24 (Dense)             (None, 100)               1000100   _________________________________________________________________dense_25 (Dense)             (None, 32)                3232      _________________________________________________________________dense_26 (Dense)             (None, 5)                 165       =================================================================Total params: 23,232,297Trainable params: 23,232,297Non-trainable params: 0_________________________________________________________________None

验证数据集:

predictions = load_model('./models/best_model.h5').predict(X12_test)print("y_test", y_test)print("predictions", predictions)print("validation set RMSE ", rmse2(predictions, y_test))y_test = y_test.overall.values

输出:

WARNING:tensorflow:Model was constructed with shape (None, 100) for input Tensor("review_input_13:0", shape=(None, 100), dtype=int32), but it was called on an input with incompatible shape (None, 6000).---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)<ipython-input-80-82850281ff1c> in <module>----> 1 predictions_o = load_model('./models/best_model.h5').predict(X12_test)      2       3 print("y1_test_truth", y1_test)      4 print("predictions_o", predictions_o)      5 print("validation set RMSE ", rmse2(predictions_o, y1_test))~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)    128       raise ValueError('{} is not supported in multi-worker mode.'.format(    129           method.__name__))--> 130     return method(self, *args, **kwargs)    131     132   return tf_decorator.make_decorator(~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)   1597           for step in data_handler.steps():   1598             callbacks.on_predict_batch_begin(step)-> 1599             tmp_batch_outputs = predict_function(iterator)   1600             if data_handler.should_sync:   1601               context.async_wait()~/.local/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)    778       else:    779         compiler = "nonXla"--> 780         result = self._call(*args, **kwds)    781     782       new_tracing_count = self._get_tracing_count()~/.local/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)    821       # This is the first call of __call__, so we have to initialize.    822       initializers = []--> 823       self._initialize(args, kwds, add_initializers_to=initializers)    824     finally:    825       # At this point we know that the initialization is complete (or less~/.local/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)    694     self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph)    695     self._concrete_stateful_fn = (--> 696         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access    697             *args, **kwds))    698 ~/.local/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)   2853       args, kwargs = None, None   2854     with self._lock:-> 2855       graph_function, _, _ = self._maybe_define_function(args, kwargs)   2856     return graph_function   2857 ~/.local/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)   3211    3212       self._function_cache.missed.add(call_context_key)-> 3213       graph_function = self._create_graph_function(args, kwargs)   3214       self._function_cache.primary[cache_key] = graph_function   3215       return graph_function, args, kwargs~/.local/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)   3063     arg_names = base_arg_names + missing_arg_names   3064     graph_function = ConcreteFunction(-> 3065         func_graph_module.func_graph_from_py_func(   3066             self._name,   3067             self._python_function,~/.local/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)    984         _, original_func = tf_decorator.unwrap(python_func)    985 --> 986       func_outputs = python_func(*func_args, **func_kwargs)    987     988       # invariant: `func_outputs` contains only Tensors, CompositeTensors,~/.local/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)    598         # __wrapped__ allows AutoGraph to swap in a converted function. We give    599         # the function a weak reference to itself to avoid a reference cycle.--> 600         return weak_wrapped_fn().__wrapped__(*args, **kwds)    601     weak_wrapped_fn = weakref.ref(wrapped_fn)    602 ~/.local/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)    971           except Exception as e:  # pylint:disable=broad-except    972             if hasattr(e, "ag_error_metadata"):--> 973               raise e.ag_error_metadata.to_exception(e)    974             else:    975               raiseValueError: in user code:    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1462 predict_function  *        return step_function(self, iterator)    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1452 step_function  **        outputs = model.distribute_strategy.run(run_step, args=(data,))    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:1211 run        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica        return self._call_for_each_replica(fn, args, kwargs)    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica        return fn(*args, **kwargs)    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1445 run_step  **        outputs = model.predict_step(data)    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1418 predict_step        return self(x, training=False)    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__        outputs = call_fn(inputs, *args, **kwargs)    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/functional.py:385 call        return self._run_internal_graph(    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph        outputs = node.layer(*args, **kwargs)    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:975 __call__        input_spec.assert_input_compatibility(self.input_spec, inputs,    /home/x/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:212 assert_input_compatibility        raise ValueError(    ValueError: Input 0 of layer dense_24 is incompatible with the layer: expected axis -1 of input shape to have value 10000 but received input with shape [None, 600000]

我正在尝试找出需要在哪里以及如何更改,以确保维度正确工作,但我还没有弄清楚具体需要更改什么。任何帮助将不胜感激。

更新:

数据的形状:

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.2, random_state = 40)[nSamp, inpShape] = X_train.shapeprint("X train shape ", X_train.shape)print("X test shape ", X_test.shape)print("y train shape ",y_train.shape)print("y test shape ",y_test.shape)print(nSamp, inpShape)

输出:

X train shape  (160000, 100)X test shape  (40000, 100)y train shape  (160000, 5)y test shape  (40000, 5)160000 100

回答:

从第一行的警告来看,X12_test的形状似乎不正确,根据警告,您的模型构建时预期输入形状为shape (None, 100),而您正在使用形状为shape (None, 6000)的输入调用模型

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注