我正在完成作业3:正则化。在查看了Github上的内容后,我尝试自己解决这个作业,但遇到了运行时错误。请注意,我选择的数据集大小比链接中提到的要小。
这是当前的情况:
print('Training set', train_dataset.shape, train_labels.shape)print('Validation set', valid_dataset.shape, valid_labels.shape)print('Test set', test_dataset.shape, test_labels.shape)#Training set (20000, 784) (20000, 10)#Validation set (1000, 784) (1000, 10)#Test set (1000, 784) (1000, 10)
问题出在这里:
from sklearn.linear_model import LogisticRegressionoriginal_train_labels = train_labelslogit_clf = LogisticRegression(penalty='l2')logit_clf.fit(train_dataset[:1000,:], original_train_labels[:1000])
运行后会得到以下错误:
---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-12-4888dc0bbc75> in <module>() 4 5 logit_clf = LogisticRegression(penalty='l2')----> 6 logit_clf.fit(train_dataset[:1000,:], original_train_labels[:1000]) 7 predicted = logit_clf.predict(test_dataset) 8 print('accuracy', accuracy((np.arange(num_labels) == predicted[:,None]).astype(np.float32), test_labels), '%')/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/logistic.pyc in fit(self, X, y, sample_weight) 1140 1141 X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, -> 1142 order="C") 1143 check_classification_targets(y) 1144 self.classes_ = np.unique(y)/usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.pyc in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator) 513 dtype=None) 514 else:--> 515 y = column_or_1d(y, warn=True) 516 _assert_all_finite(y) 517 if y_numeric and y.dtype.kind == 'O':/usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.pyc in column_or_1d(y, warn) 549 return np.ravel(y) 550 --> 551 raise ValueError("bad input shape {0}".format(shape)) 552 553 ValueError: bad input shape (1000, 10)
有什么解决方法吗?
回答:
你对train_labels使用了独热编码。这意味着它的形状是[1000, 10],有1000个样本,每个样本有10个’列’,其中1表示我们正在讨论的类别。这对于神经网络是必需的,但sklearn的Logistic Regression 要求它的形状是[1000, 1],也就是说,它应该是一个有1000行的向量,每行应该有一个整数来指示目标类别。使用argmax函数将独热编码转换为整数,你的问题就解决了。