我正在尝试使用拆分、索引并存储在磁盘上的Chroma中持久化的PDF产品手册创建RAG。当我尝试使用文档上下文对评论进行分类的函数时,出现了以下错误:
from langchain import PromptTemplatefrom langchain_core.output_parsers import StrOutputParserfrom langchain_core.runnables import RunnablePassthroughfrom langchain.embeddings import AzureOpenAIEmbeddingsfrom langchain.chat_models import AzureChatOpenAIfrom langchain.vectorstores import Chromallm = AzureChatOpenAI( azure_deployment="ChatGPT-16K", openai_api_version="2023-05-15", azure_endpoint=endpoint, api_key=result["access_token"], temperature=0, seed = 100 )embedding_model = AzureOpenAIEmbeddings( api_version="2023-05-15", azure_endpoint=endpoint, api_key=result["access_token"], azure_deployment="ada002",)vectordb = Chroma( persist_directory=vector_db_path, embedding_function=embedding_model, collection_name="product_manuals",)def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs)def classify (review_title, review_text, product_num): template = """ You are a customer service AI Assistant that handles responses to negative product reviews. Use the context below and categorize {review_title} and {review_text} into defect, misuse or poor quality categories based only on provided context. If you don't know, say that you do not know, don't try to make up an answer. Respond back with an answer in the following format: poor quality misuse defect {context} Category: """ rag_prompt = PromptTemplate.from_template(template) retriever = vectordb.as_retriever(search_type="similarity", search_kwargs={'filter': {'product_num': product_num}}) retrieval_chain = ( {"context": retriever | format_docs, "review_title: RunnablePassthrough(), "review_text": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser() ) return retrieval_chain.invoke({"review_title": review_title, "review_text": review_text})classify(review_title="Terrible", review_text ="This baking sheet is terrible. It stains so easily and i've tried everything to get it clean", product_num ="8888999")
错误堆栈:
---------------------------------------------------------------------------TypeError Traceback (most recent call last)File <command-3066972537097411>, line 1----> 1 issue_recommendation( 2 review_title="Terrible", 3 review_text="This baking sheet is terrible. It stains so easily and i've tried everything to get it clean. I've maybe used it 5 times and it looks like it's 20 years old. The side of the pan also hold water, so when you pick it up off the drying rack, water runs out. I would never purchase these again.", 4 product_num="8888999" 5 6 )File <command-3066972537097410>, line 44, in issue_recommendation(review_title, review_text, product_num) 36 retriever = vectordb.as_retriever(search_type="similarity", search_kwargs={'filter': {'product_num': product_num}}) 38 retrieval_chain = ( 39 {"context": retriever | format_docs, "review_text": RunnablePassthrough()} 40 | rag_prompt 41 | llm 42 | StrOutputParser() 43 )---> 44 return retrieval_chain.invoke({"review_title":review_title, "review_text": review_text})File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_core/runnables/base.py:1762, in RunnableSequence.invoke(self, input, config) 1760 try: 1761 for i, step in enumerate(self.steps):-> 1762 input = step.invoke( 1763 input, 1764 # mark each step as a child run 1765 patch_config( 1766 config, callbacks=run_manager.get_child(f"seq:step:{i+1}") 1767 ), 1768 ) 1769 # finish the root run 1770 except BaseException as e:File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_core/runnables/base.py:2327, in RunnableParallel.invoke(self, input, config) 2314 with get_executor_for_config(config) as executor: 2315 futures = [ 2316 executor.submit( (...) 2325 for key, step in steps.items() 2326 ]-> 2327 output = {key: future.result() for key, future in zip(steps, futures)} 2328 # finish the root run 2329 except BaseException as e:File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_core/runnables/base.py:2327, in <dictcomp>(.0) 2314 with get_executor_for_config(config) as executor: 2315 futures = [ 2316 executor.submit( (...) 2325 for key, step in steps.items() 2326 ]-> 2327 output = {key: future.result() for key, future in zip(steps, futures)} 2328 # finish the root run 2329 except BaseException as e:File /usr/lib/python3.10/concurrent/futures/_base.py:451, in Future.result(self, timeout) 449 raise CancelledError() 450 elif self._state == FINISHED:--> 451 return self.__get_result() 453 self._condition.wait(timeout) 455 if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:File /usr/lib/python3.10/concurrent/futures/_base.py:403, in Future.__get_result(self) 401 if self._exception: 402 try:--> 403 raise self._exception 404 finally: 405 # Break a reference cycle with the exception in self._exception 406 self = NoneFile /usr/lib/python3.10/concurrent/futures/thread.py:58, in _WorkItem.run(self) 55 return 57 try:---> 58 result = self.fn(*self.args, **self.kwargs) 59 except BaseException as exc: 60 self.future.set_exception(exc)File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_core/runnables/base.py:1762, in RunnableSequence.invoke(self, input, config) 1760 try: 1761 for i, step in enumerate(self.steps):-> 1762 input = step.invoke( 1763 input, 1764 # mark each step as a child run 1765 patch_config( 1766 config, callbacks=run_manager.get_child(f"seq:step:{i+1}") 1767 ), 1768 ) 1769 # finish the root run 1770 except BaseException as e:File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_core/retrievers.py:121, in BaseRetriever.invoke(self, input, config) 117 def invoke( 118 self, input: str, config: Optional[RunnableConfig] = None 119 ) -> List[Document]: 120 config = ensure_config(config)--> 121 return self.get_relevant_documents( 122 input, 123 callbacks=config.get("callbacks"), 124 tags=config.get("tags"), 125 metadata=config.get("metadata"), 126 run_name=config.get("run_name"), 127 )File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_core/retrievers.py:223, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs) 221 except Exception as e: 222 run_manager.on_retriever_error(e)--> 223 raise e 224 else: 225 run_manager.on_retriever_end( 226 result, 227 **kwargs, 228 )File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_core/retrievers.py:216, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs) 214 _kwargs = kwargs if self._expects_other_args else {} 215 if self._new_arg_supported:--> 216 result = self._get_relevant_documents( 217 query, run_manager=run_manager, **_kwargs 218 ) 219 else: 220 result = self._get_relevant_documents(query, **_kwargs)File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_core/vectorstores.py:654, in VectorStoreRetriever._get_relevant_documents(self, query, run_manager) 650 def _get_relevant_documents( 651 self, query: str, *, run_manager: CallbackManagerForRetrieverRun 652 ) -> List[Document]: 653 if self.search_type == "similarity":--> 654 docs = self.vectorstore.similarity_search(query, **self.search_kwargs) 655 elif self.search_type == "similarity_score_threshold": 656 docs_and_similarities = ( 657 self.vectorstore.similarity_search_with_relevance_scores( 658 query, **self.search_kwargs 659 ) 660 )File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py:348, in Chroma.similarity_search(self, query, k, filter, **kwargs) 331 def similarity_search( 332 self, 333 query: str, (...) 336 **kwargs: Any, 337 ) -> List[Document]: 338 """Run similarity search with Chroma. 339 340 Args: (...) 346 List[Document]: List of documents most similar to the query text. 347 """--> 348 docs_and_scores = self.similarity_search_with_score( 349 query, k, filter=filter, **kwargs 350 ) 351 return [doc for doc, _ in docs_and_scores]File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py:437, in Chroma.similarity_search_with_score(self, query, k, filter, where_document, **kwargs) 429 results = self.__query_collection( 430 query_texts=[query], 431 n_results=k, (...) 434 **kwargs, 435 ) 436 else:--> 437 query_embedding = self._embedding_function.embed_query(query) 438 results = self.__query_collection( 439 query_embeddings=[query_embedding], 440 n_results=k, (...) 443 **kwargs, 444 ) 446 return _results_to_docs_and_scores(results)File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_community/embeddings/openai.py:691, in OpenAIEmbeddings.embed_query(self, text) 682 def embed_query(self, text: str) -> List[float]: 683 """Call out to OpenAI's embedding endpoint for embedding query text. 684 685 Args: (...) 689 Embedding for the text. 690 """--> 691 return self.embed_documents([text])[0]File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_community/embeddings/openai.py:662, in OpenAIEmbeddings.embed_documents(self, texts, chunk_size) 659 # NOTE: to keep things simple, we assume the list may contain texts longer 660 # than the maximum context and use length-safe embedding function. 661 engine = cast(str, self.deployment)--> 662 return self._get_len_safe_embeddings(texts, engine=engine)File /local_disk0/.ephemeral_nfs/envs/pythonEnv-65a09d8c-062d-4f4f-9c52-1bf534f6511e/lib/python3.10/site-packages/langchain_community/embeddings/openai.py:465, in OpenAIEmbeddings._get_len_safe_embeddings(self, texts, engine, chunk_size) 459 if self.model.endswith("001"): 460 # See: https://github.com/openai/openai-python/ 461 # issues/418#issuecomment-1525939500 462 # replace newlines, which can negatively affect performance. 463 text = text.replace("\n", " ")--> 465 token = encoding.encode( 466 text=text, 467 allowed_special=self.allowed_special, 468 disallowed_special=self.disallowed_special, 469 ) 471 # Split tokens into chunks respecting the embedding_ctx_length 472 for j in range(0, len(token), self.embedding_ctx_length):File /databricks/python/lib/python3.10/site-packages/tiktoken/core.py:116, in Encoding.encode(self, text, allowed_special, disallowed_special) 114 if not isinstance(disallowed_special, frozenset): 115 disallowed_special = frozenset(disallowed_special)--> 116 if match := _special_token_regex(disallowed_special).search(text): 117 raise_disallowed_special_token(match.group()) 119 try:TypeError: 预期字符串或缓冲区
在测试时,嵌入似乎工作正常。当我从链中移除上下文和检索器时,它也正常工作。这似乎与嵌入有关。Langchain 网站上的示例是从Chroma.from_documents()实例化检索器,而我是从持久化路径加载Chroma向量存储。我还尝试仅使用review_text(而不是review title和review text)调用,但错误仍然存在。不确定为什么会发生这种情况。这些是我使用的包版本:
名称:openai版本:1.6.1
名称:langchain版本:0.0.354
回答:
我遇到了同样的问题,发现langchain
将键值对作为输入传递给encoding.code()
,而它需要str
类型。一个解决方法是使用itemgetter()
来获取直接的字符串输入。可能类似于这样
retrieval_chain = ( { "document": itemgetter("question") | self.retriever, "question": itemgetter("question"), } | prompt | model | StrOutputParser() )
你可以在这里找到参考这里