TypeError: 不支持的类型 用于 StructuredDataAdapter

谁能帮我解决上述错误?

### 使用来自 sklearn.compose 的变换器
from sklearn.compose import ColumnTransformer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import MinMaxScaler
column_trans = ColumnTransformer(
        [
         ('CompanyName_bow', TfidfVectorizer(), 'CompanyName'),
         ('state_category', OneHotEncoder(), ['state']),
         ('Termination_Reason_Desc_bow', TfidfVectorizer(), 'Termination_Reason_Desc'),
         ('TermType_category', OneHotEncoder(), ['TermType'])
        ],
        remainder=MinMaxScaler()
       )
X = column_trans.fit_transform(X.head(100))
from sklearn.preprocessing import LabelEncoder
y = LabelEncoder().fit_transform(y.head(100))
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=5)
X_train.shape  #(80, 92)
X_test.shape   #(20, 92)
y_train.shape  #(80,)
X_train.todense()
matrix([[0.        , 0.        , 0.        , ..., 0.26921709, 1.        ,
         0.        ],
        [0.        , 0.        , 0.        , ..., 0.        , 0.        ,
         1.        ],
        [0.        , 0.        , 0.        , ..., 0.46148896, 1.        ,
         0.        ],
        ...,
        [0.        , 0.        , 0.        , ..., 0.46148896, 1.        ,
         0.        ],
        [0.        , 0.        , 0.        , ..., 0.        , 0.        ,
         1.        ],
        [0.        , 0.        , 0.        , ..., 0.46148896, 1.        ,
         0.        ]])
type(X_train)--> scipy.sparse.csr.csr_matrix
print(y_train)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
 type(y_train)
numpy.ndarray
# 使用 autokeras 寻找 sonar 数据集的模型
from numpy import asarray
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from autokeras import StructuredDataClassifier
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
# 定义搜索
search = StructuredDataClassifier(max_trials=15)
# 执行搜索
search.fit(x=(X_train), y=y_train, verbose=0)
# 评估模型
loss, acc = search.evaluate(X_test, y_test, verbose=0)
print('准确率: %.3f' % acc)

错误

(80, 92) (20, 92) (80,) (20,)
INFO:tensorflow:从现有项目 .\structured_data_classifier\oracle.json 重新加载 Oracle
INFO:tensorflow:从 .\structured_data_classifier\tuner0.json 重新加载 Tuner
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-106-94708e5d279d> in <module>
     10 search = StructuredDataClassifier(max_trials=15)
     11 # 执行搜索
---> 12 search.fit(x=(X_train), y=y_train, verbose=0)
     13 # 评估模型
     14 loss, acc = search.evaluate(X_test, y_test, verbose=0)
~\anaconda3\lib\site-packages\autokeras\tasks\structured_data.py in fit(self, x, y, epochs, callbacks, validation_split, validation_data, **kwargs)
    313                 [keras.Model.fit](https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit).
    314         """
--> 315         super().fit(
    316             x=x,
    317             y=y,
~\anaconda3\lib\site-packages\autokeras\tasks\structured_data.py in fit(self, x, y, epochs, callbacks, validation_split, validation_data, **kwargs)
    132         self.check_in_fit(x)
    133 --> 134         super().fit(
    135             x=x,
    136             y=y,
~\anaconda3\lib\site-packages\autokeras\auto_model.py in fit(self, x, y, batch_size, epochs, callbacks, validation_split, validation_data, **kwargs)
    259             validation_split = 0
    260 --> 261         dataset, validation_data = self._convert_to_dataset(
    262             x=x, y=y, validation_data=validation_data, batch_size=batch_size
    263         )
~\anaconda3\lib\site-packages\autokeras\auto_model.py in _convert_to_dataset(self, x, y, validation_data, batch_size)
    373             x = dataset.map(lambda x, y: x)
    374             y = dataset.map(lambda x, y: y)
--> 375         x = self._adapt(x, self.inputs, batch_size)
    376         y = self._adapt(y, self._heads, batch_size)
    377         dataset = tf.data.Dataset.zip((x, y))
~\anaconda3\lib\site-packages\autokeras\auto_model.py in _adapt(self, dataset, hms, batch_size)
    287         adapted = []
    288         for source, hm in zip(sources, hms):
--> 289             source = hm.get_adapter().adapt(source, batch_size)
    290             adapted.append(source)
    291         if len(adapted) == 1:
~\anaconda3\lib\site-packages\autokeras\engine\adapter.py in adapt(self, dataset, batch_size)
     65             tf.data.Dataset. The converted dataset.
     66         """
---> 67         self.check(dataset)
     68         dataset = self.convert_to_dataset(dataset, batch_size)
     69         return dataset
~\anaconda3\lib\site-packages\autokeras\adapters\input_adapters.py in check(self, x)
     63     def check(self, x):
     64         if not isinstance(x, (pd.DataFrame, np.ndarray, tf.data.Dataset)):
---> 65             raise TypeError(
     66                 "Unsupported type {type} for "
     67                 "{name}.".format(type=type(x), name=self.__class__.__name__)
TypeError: 不支持的类型 <class 'scipy.sparse.csr.csr_matrix'> 用于 StructuredDataAdapter.

回答:

正如您在与此线程并行打开的Github issue中所注意到的,稀疏矩阵在AutoKeras中(目前)不被支持,建议将其转换为密集的Numpy数组。实际上,从AutoKeras StructuredDataClassifier文档中可以看到,相应的.fit方法中的训练数据x应为:

字符串,numpy.ndarray,pandas.DataFrame或tensorflow.Dataset

而不是SciPy稀疏矩阵。

考虑到这里您的X_train非常小:

X_train.shape  # (80, 92)

您完全没有理由使用稀疏矩阵。虽然您似乎尝试将X_train转换为密集矩阵,但您没有重新赋值,结果它仍然是稀疏矩阵;从您上面的代码中可以看到:

X_train.todense()
# ...
type(X_train)
# scipy.sparse.csr.csr_matrix

您需要做的只是简单地重新赋值为密集数组:

from scipy.sparse import csr_matrix
X_train = X_train.toarray()

这里有一个使用虚拟数据的简短演示,证明这是可行的:

import numpy as np
from scipy.sparse import csr_matrix
X_train = csr_matrix((3, 4), dtype=np.float)
type(X_train)
# scipy.sparse.csr.csr_matrix
# 这不会起作用:
X_train.todense()
type(X_train)
# scipy.sparse.csr.csr_matrix # 仍然是稀疏的
# 这会起作用:
X_train = X_train.toarray()
type(X_train)
# numpy.ndarray

您应该对X_test数据执行类似的程序(您的y_trainy_test似乎已经是密集的Numpy数组)。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注