图像分类器总是给出相同的结果:我已经没有想法了

我目前正在开发一个CNN,用于预测两类图像的分类:武器和非武器。这个项目的目的是能够检测图像中是否存在武器(手枪/步枪)。

我的问题是:无论我尝试什么,分类器都预测图像中没有武器。你们能找出我的代码中可能导致此问题的缺陷吗?

我是一名计算机科学的高年级学生,但在机器学习领域几乎没有背景知识。

任何帮助都将不胜感激!

# Initializing the CNNclassifier = Sequential()# Step 1 - Convolutionclassifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))# Step 2 - Poolingclassifier.add(MaxPooling2D(pool_size=(2, 2)))# Adding a second convolutional layerclassifier.add(Conv2D(32, (3, 3), activation='relu'))classifier.add(MaxPooling2D(pool_size=(2, 2)))# Step 3 - Flatteningclassifier.add(Flatten())# Step 4 - Full connectionclassifier.add(Dense(units=128, activation='relu'))classifier.add(Dense(units=1, activation='sigmoid'))# Compiling the CNNclassifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# Part 2 - Fitting the CNN to the imagesfrom keras.preprocessing.image import ImageDataGeneratortrain_datagen = ImageDataGenerator(rescale=1. / 255)test_datagen = ImageDataGenerator(rescale=1. / 255)valid_datagen = ImageDataGenerator(rescale=1. / 255)training_set = train_datagen.flow_from_directory('C:/Users/chill/PycharmProjects/499Actual/venv/data/TrainDataSet/',                                                 target_size=(64, 64),                                                 batch_size=29,                                                 class_mode='binary')test_set = test_datagen.flow_from_directory('C:/Users/chill/PycharmProjects/499Actual/venv/data/TestDataSet/',                                            target_size=(64, 64),                                            batch_size=7,                                            class_mode='binary')valid_set = valid_datagen.flow_from_directory('C:/Users/chill/PycharmProjects/499Actual/venv/data/ValidationDataSet/',                                              target_size=(64, 64),                                              batch_size=7,                                              class_mode='binary')classifier.fit_generator(training_set,                         steps_per_epoch=348,                         epochs=1,                         validation_data=valid_set,                         validation_steps=100)# Part 3 - Making new predictionsimport numpy as npfrom keras.preprocessing import image# test_image = image.load_img('C:/Users/chill/PycharmProjects/499Actual/venv/data/TestDataSet/ProbablySoap/P1030135.jpg',#                         target_size=(64, 64))test_image = image.load_img('C:/Users/chill/PycharmProjects/499Actual/venv/data/TestDataSet/Guns/301.jpeg',                            target_size=(64, 64))test_image = image.img_to_array(test_image)test_image = np.expand_dims(test_image, axis=0)result = classifier.predict_classes(test_image)print(result[0][0])var = training_set.class_indicesif result[0][0] == 1:    prediction = 1    print("Gun!")else:    prediction = 0    print("Not.")

免责声明:“ProbablySoap”只是不包含武器的图像集。

更新

在这种情况下,输入图像包含武器。每次输出都预测为“不是”。

更新2这是代码的输出:

Found 348 images belonging to 2 classes.Found 42 images belonging to 2 classes.Found 42 images belonging to 2 classes.Epoch 1/1  1/348 [..............................] - ETA: 1:15 - loss: 0.6915 - accuracy: 0.5517  2/348 [..............................] - ETA: 47s - loss: 0.6994 - accuracy: 0.6724   3/348 [..............................] - ETA: 38s - loss: 0.7130 - accuracy: 0.6897  4/348 [..............................] - ETA: 33s - loss: 0.6565 - accuracy: 0.7155  5/348 [..............................] - ETA: 30s - loss: 0.6496 - accuracy: 0.7103  6/348 [..............................] - ETA: 28s - loss: 0.6384 - accuracy: 0.7241  7/348 [..............................] - ETA: 27s - loss: 0.6301 - accuracy: 0.7340

346/348 [============================>.] - ETA: 0s - loss: 0.0940 - accuracy: 0.9628347/348 [============================>.] - ETA: 0s - loss: 0.0937 - accuracy: 0.9629348/348 [==============================] - 34s 98ms/step - loss: 0.0935 - accuracy: 0.9630 - val_loss: 0.2081 - val_accuracy: 0.97570Not.Process finished with exit code 0

回答:

我认为你的问题是:

你生成了一个带有缩放test_set

test_datagen = ImageDataGenerator(rescale=1. / 255)test_set = test_datagen.flow_from_directory('C:/Users/chill/PycharmProjects/499Actual/venv/data/TestDataSet/',                                            target_size=(64, 64),                                            batch_size=7,                                            class_mode='binary')

但你从未使用过它,你从测试目录导入了一个文件,并在没有缩放的情况下使用它:

test_image = image.load_img('C:/Users/chill/PycharmProjects/499Actual/venv/data/TestDataSet/Guns/301.jpeg',                            target_size=(64, 64))test_image = image.img_to_array(test_image)test_image = np.expand_dims(test_image, axis=0)

这就是为什么分类器无法正确分类后续导入的图像的原因。

希望这对你有帮助。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注