#import blah blah#激活函数Linear = torch.nn.Linear(6,1)sig = torch.nn.Sigmoid()#优化器optim = torch.optim.SGD(Linear.parameters() ,lr = 0.001)#输入#x => (891,6)#输出y = y.reshape(891,1) #损失函数loss_f = torch.nn.BCELoss()for iter in range (10): for i in range (1000): optim.zero_grad() forward = sig(Linear(x)) > 0.5 forward = forward.to(torch.float32) forward.requires_grad = True loss = loss_f(forward, y) loss.backward() optim.step()
在这个代码中,我想更新Linear.weight和Linear.bias,但它不起作用。我认为我的代码不知道什么是权重和偏置,所以我尝试将
optim = torch.optim.SGD(Linear.parameters() ,lr = 0.001)
改为
optim = torch.optim.SGD([Linear.weight, Linear.bias] ,lr = 0.001)
但仍然不起作用,,
// 我想更详细地解释我的问题,但我的英语水平太低 🥲 抱歉
回答:
BCELoss的定义如下
如你所见,输入x
是概率。然而,你使用sig(Linear(x)) > 0.5
是错误的。此外,sig(Linear(x)) > 0.5
返回一个没有自动梯度的张量,这会破坏计算图。虽然你明确设置了requires_grad=True
,但由于计算图已被破坏,无法在反向传播时到达线性层,因此其权重不会被学习/改变。
正确使用示例:
import torchimport numpy as npLinear = torch.nn.Linear(6,1)sig = torch.nn.Sigmoid()#优化器optim = torch.optim.SGD(Linear.parameters() ,lr = 0.001)# 示例数据x = torch.rand(891,6)y = torch.rand(891,1)loss_f = torch.nn.BCELoss()for iter in range (10): optim.zero_grad() output = sig(Linear(x)) loss = loss_f(sig(Linear(x)), y) loss.backward() optim.step() print (Linear.bias.item())
输出:
0.107170909643173220.107036732137203220.106902636587619780.106768615543842320.106634676456451420.106500819325447080.106367036700248720.106233336031436920.106099717319011690.10596618056297302