每次迭代时,训练损失都在增加。
Iter Train Loss Remaining Time 1 5313.1014 22.51s 2 5170.8669 21.21s 3 1641863.7866 20.05s 4 1640770.5703 18.86s 5 1695332.9514 17.62s 6 1689162.9816 16.42s 7 1689562.3732 15.26s 8 1803110.9519 14.08s 9 1801803.5873 12.94s 10 2274529.9750 11.77s 11 17589338.0388 10.59s 12 1121779686.7875 10.03s 13 1071057062185277527192667544912333682394851905403317706031104.0000 14 1071057062185277527192667544912333682394851905403317706031104.0000 15 1071057062185277527192667544912333682394851905403317706031104.0000 16 1071057062185277527192667544912333682394851905403317706031104.0000 17 1071057062185277527192667544912333682394851905403317706031104.0000 18 1071057062185277527192667544912333682394851905403317706031104.0000 19 1071057062185277527192667544912333682394851905403317706031104.0000 20 1071057062185277527192667544912333682394851905403317706031104.0000
我的输入是一个由0和1组成的巨大矩阵(向量化单词,稀疏矩阵),我的目标是整数:
array([131, 64, 64, 134, 32, 50, 42, 154, 124, 29, 64, 154, 137, 64, 64, 64, 89, 16, 125, 64])
或许我的代码有问题,但我不这么认为。以下是我的代码:
xgboost = GradientBoostingClassifier(n_estimators=20, min_samples_leaf=2, min_samples_split=3, verbose=10, max_features=20)xgboost.fit(xtrain, ytrain)
我的输入形状是:
<1544x19617 sparse matrix of type '<class 'numpy.int64'>' with 202552 stored elements in Compressed Sparse Row format>
回答:
当训练损失突然激增时,有时是因为陷入了一个退化的解空间。降低学习率可能会有所帮助(在这种情况下似乎确实如此)。在梯度提升中,学习率影响每个连续树对现有预测的影响。通过降低学习率,任何一棵树对整体预测的剧烈改变能力都会降低,这有助于避免意外陷入退化的解空间。