我在尝试使用tf.keras中的model.predict()来预测单张图像的类别,结果返回的类概率高于1,这是不合理的。我不确定为什么会出现这种情况。以下是我训练CNN的方式:
class_names = ['Angry','Disgust','Fear','Happy','Sad','Surprise','Neutral']model = models.Sequential()model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(48, 48, 1), kernel_regularizer=tf.keras.regularizers.l1(0.01)))model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu'))model.add(layers.MaxPooling2D((2, 2)))model.add(tf.keras.layers.Dropout(0.5))model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.MaxPooling2D((2, 2)))model.add(tf.keras.layers.Dropout(0.5))model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.summary()model.add(layers.Flatten())model.add(layers.Dense(64, activation='relu'))model.add(layers.Dense(7))#model.summary()model.compile(optimizer='adam',loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])lr_reducer = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.9, patience=3) #monitors the validation loss for signs of a plateau and then alter the learning rate by the specified factor if a plateau is detectedearly_stopper = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', min_delta=0, patience=6, mode='auto') #This will monitor and stop the model training if it is not further convergingcheckpointer = tf.keras.callbacks.ModelCheckpoint('C:\\Users\\rtlum\\Documents\\DataSci_Projects\\PythonTensorFlowProjects\\Datasets\\FER2013_Model_Weights\\Model\\weights.hd5', monitor='val_loss', verbose=1, save_best_only=True) #This allows checkpoints to be saved each epoch just in case the model stops trainingepochs = 100batch_size = 64learning_rate = 0.001model.fit( train_data, train_labels, epochs = epochs, batch_size = batch_size, validation_split = 0.2, shuffle = True, callbacks=[lr_reducer, checkpointer, early_stopper] )
以下是我调用model.predict()并传入单张图像进行预测的方式:
model = tf.keras.models.load_model('Model\\weights.hd5') img = Image.open(test_image).convert('L') img = img.resize([48, 48]) image_data = np.asarray(img, dtype=np.uint8) #image_data = np.resize(img,3072) image_data = image_data / 255 image_data_test = image_data.reshape((1, 48, 48, 1)) class_names = ['Angry','Disgust','Fear','Happy','Sad','Surprise','Neutral'] x = model.predict(image_data_test) app.logger.info(x) image_pred = np.argmax(x) y = round(x[0][np.argmax(x)], 2) confidence = y * 100 print(class_names[image_pred], confidence)
最后,以下是我从model.predict()接收到的类概率:
>>> x = model.predict(image_data_test)>>> xarray([[ 1.0593076 , -3.5140653 , 0.7505076 , 2.1341033 , 0.02394461, -0.08749148, 0.6640976 ]], dtype=float32)
回答:
您的最后一层 model.add(layers.Dense(7))
使用的是线性激活函数。为了获得7个类的概率,您应该使用 softmax
激活函数。
将您的最后一层更改为
model.add(layers.Dense(7 , activation='softmax'))