我在为一个任务创建一个TensorFlow的输入管道。我已经设置了一个TFRecord数据集,并将其保存到磁盘上的文件中。
我尝试使用以下代码加载数据集(以便进行批处理并发送到实际的机器学习算法):
dataset = tf.data.TFRecordDataset(filename)
print("开始映射...")
dataset = dataset.map(map_func = read_single_record)
print("映射完成")
buffer = 500 # 我们将从多大的缓冲区中进行抽样?
batch_size = 125
capacity = buffer + 2 * batch_size
print("正在打乱数据集...")
dataset = dataset.shuffle(buffer_size = buffer)
print("正在批处理数据集...")
dataset = dataset.batch(batch_size)
dataset = dataset.repeat()
print("创建迭代器...")
iterator = dataset.make_one_shot_iterator()
examples_batch, labels_batch = iterator.get_next()
然而,在dataset.map()这一行我遇到了错误。错误信息如下: TypeError: Expected int64, got <tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x00000000085F74A8> of type 'SparseTensor' instead.
read_single_record()
函数如下所示:
keys_to_features = { "image/pixels": tf.FixedLenFeature([], tf.string, default_value = ""), "image/label/class": tf.FixedLenFeature([], tf.int64, default_value = 0), "image/label/numbb": tf.FixedLenFeature([], tf.int64, default_value = 0), "image/label/by": tf.VarLenFeature(tf.float32), "image/label/bx": tf.VarLenFeature(tf.float32), "image/label/bh": tf.VarLenFeature(tf.float32), "image/label/bw": tf.VarLenFeature(tf.float32) }
features = tf.parse_single_example(record, keys_to_features)
image_pixels = tf.image.decode_image(features["image/pixels"])
print("特征: {0}".format(features))
example = image_pixels # 可能在某些时候想对这个进行一些处理
label = [features["image/label/class"], features["image/label/numbb"], features["image/label/by"], features["image/label/bx"], features["image/label/bh"], features["image/label/bw"]]
return example, label
我不确定问题出在哪里。我从TensorFlow API文档中获取了这个代码的灵感,并根据我的需要稍作修改。我真的不知道从哪里开始尝试修复这个问题。
为了参考,这是我用于生成TFRecord文件的代码:
def parse_annotations(in_file, img_filename, cell_width, cell_height): """ 解析注释文件以获取单个图像的边界框 """
y_mins = []
x_mins = []
heights = []
widths = []
grids_x = []
grids_y = []
classes = [0]
num_faces = int(in_file.readline().rstrip())
img_width, img_height = get_image_dims(img_filename)
for i in range(num_faces):
clss, x, y, width, height = in_file.readline().rstrip().split(',')
x = float(x)
y = float(y)
width = float(width)
height = float(height)
x = x - (width / 2.0)
y = y - (height / 2.0)
y_mins.append(y)
x_mins.append(x)
heights.append(height)
widths.append(width)
grid_x, grid_y = get_grid_loc(x, y, width, height, img_width, img_height, cell_width, cell_height)
pixels = get_image_pixels(img_filename)
example = tf.train.Example(features = tf.train.Features(feature = {
"image/pixels": bytes_feature(pixels),
"image/label/class": int_list_feature(classes),
"image/label/numbb": int_list_feature([num_faces]),
"image/label/by": float_list_feature(y_mins),
"image/label/bx": float_list_feature(x_mins),
"image/label/bh": float_list_feature(heights),
"image/label/bw": float_list_feature(widths)
}))
return example, num_faces
if len(sys.argv) < 4:
print("使用方法: python convert_to_tfrecord.py [处理后的注释文件路径] [训练输出文件路径] [验证输出文件路径] [训练比例]")
else:
processed_fn = sys.argv[1]
train_fn = sys.argv[2]
valid_fn = sys.argv[3]
train_frac = float(sys.argv[4])
if(train_frac > 1.0 or train_frac < 0.0):
print("训练比例(f)必须是 0 <= f <= 1")
else:
with tf.python_io.TFRecordWriter(train_fn) as writer:
with tf.python_io.TFRecordWriter(valid_fn) as valid_writer:
with open(processed_fn) as f:
for line in f:
ex, n_faces = parse_annotations(f, line.rstrip(), 30, 30)
randVal = rand.random()
if(randVal < train_frac):
writer.write(ex.SerializeToString())
else:
valid_writer.write(ex.SerializeToString())
请注意,我已经删除了一些与实际序列化/创建TFRecords文件无关的代码。
回答:
虽然没有测试,但似乎映射函数不能返回SparseTensor
和Tensor
的列表。
tf.VarLenFeature(tf.float32)
返回一个SparseTensor
,但tf.FixedLenFeature([], tf.int64)
返回一个Tensor
。
为了使批处理能够正常工作,我建议你只使用Tensor
。
关于如何推导label
的建议:
label = {
"image/label/class" : features["image/label/class"],
"image/label/numbb" : features["image/label/numbb"],
"image/label/by" : tf.sparse_tensor_to_dense(features["image/label/by"], default_value=-1),
"image/label/bx" : tf.sparse_tensor_to_dense(features["image/label/bx"], default_value=-1),
"image/label/bh" : tf.sparse_tensor_to_dense(features["image/label/bh"], default_value=-1),
"image/label/bw" : tf.sparse_tensor_to_dense(features["image/label/bw"], default_value=-1)
}
关于如何处理此映射输出的灵感,我建议你参考这个讨论。