我一直在尝试构建一个简单的两层神经网络。我研究了TensorFlow的API和官方教程,成功构建了一个单层模型,但在构建神经网络时遇到了问题。以下是我代码中导致错误的一段:
with graph.as_default(): tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.int32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) weights0 = tf.Variable(tf.truncated_normal([image_size**2, num_labels])) biases0 = tf.Variable(tf.zeros([num_labels])) hidden1 = tf.nn.relu(tf.matmul(tf_test_dataset, weights0) + biases0) weights1 = tf.Variable(tf.truncated_normal([num_labels, image_size * image_size])) biases1 = tf.Variable(tf.zeros([image_size**2])) hidden2 = tf.nn.relu(tf.matmul(hidden1, weights1) + biases1) logits = tf.matmul(hidden2, weights0) + biases0 labels = tf.expand_dims(tf_train_labels, 1) indices = tf.expand_dims(tf.range(0, batch_size), 1) concated = tf.concat(1, [indices, tf.cast(labels,tf.int32)]) onehot_labels = tf.sparse_to_dense(concated, tf.pack([batch_size, num_labels]), 1.0, 0.0) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, onehot_labels)) optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(tf.matmul(tf.nn.relu(tf.matmul(tf.nn.relu(tf.matmul(tf_valid_dataset,weights0) + biases0),weights1)+biases1),weights0)+biases0) test_prediction = tf.nn.softmax(tf.matmul(tf.nn.relu(tf.matmul(tf.nn.relu(tf.matmul(tf_test_dataset,weights0) + biases0),weights1)+biases1),weights0)+biases0)
错误信息如下:
Traceback (most recent call last): File "./test1.py", line 60, in <module> concated = tf.concat(1, [indices, tf.cast(labels,tf.int32)]) File "/Users/username/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 309, in concat name=name) File "/Users/username/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 70, in _concat name=name) File "/Users/username/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/op_def_library.py", line 664, in apply_op op_def=op_def) File "/Users/username/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1836, in create_op set_shapes_for_outputs(ret) File "/Users/username/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1476, in set_shapes_for_outputs shapes = shape_func(op) File "/Users/username/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 364, in _ConcatShape concat_dim + 1:].merge_with(value_shape[concat_dim + 1:]) File "/Users/username/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/tensor_shape.py", line 527, in merge_with self.assert_same_rank(other) File "/Users/username/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/tensor_shape.py", line 570, in assert_same_rank "Shapes %s and %s must have the same rank" % (self, other)) ValueError: Shapes TensorShape([]) and TensorShape([Dimension(10)]) must have the same rank
完整代码请见:http://pastebin.com/sX7RqbAf
我使用的是TensorFlow和Python 2.7。我对神经网络和机器学习还比较新手,感谢您的理解和帮助。
回答:
在您的例子中:
tf_train_labels
的形状为[batch_size, num_labels]
- 因此
labels
的形状为[batch_size, 1, num_labels]
indices
的形状为[batch_size, 1]
因此,当您编写以下代码时:
concated = tf.concat(1, [indices, tf.cast(labels,tf.int32)])
会抛出错误,因为 labels
和 indices
的第三维度不同。labels
的第三维度大小为 num_labels
(可能为10),而 indices
没有第三维度。