TensorFlow中的FCN-8解码器(全卷积网络)

我正在实现FCN-8解码器(这是deeplearning.ai高级深度学习技术TensorFlow课程,计算机视觉课程,第3周,语义分割的作业)

我实现了下面的代码,我怀疑存在一些维度问题:运行测试时,它在以下行失败:

o = tf.keras.layers.Add()([o, o2])

报错信息为 ValueError: Operands could not be broadcast together with shapes (8, 12, 11) (4, 6, 11),因此我猜测我试图连接形状不同的对象。

我还复制了测试的代码部分,FCN8()方法在我看来是安全的。

你有什么提示吗?

def fcn8_decoder(convs, n_classes):  # features from the encoder stage  f3, f4, f5 = convs  # number of filters  n = 512  # add convolutional layers on top of the CNN extractor.  o = tf.keras.layers.Conv2D(n , (7 , 7) , activation='relu' , padding='same', name="conv6", data_format=IMAGE_ORDERING)(f5)  o = tf.keras.layers.Dropout(0.5)(o)  o = tf.keras.layers.Conv2D(n , (1 , 1) , activation='relu' , padding='same', name="conv7", data_format=IMAGE_ORDERING)(o)  o = tf.keras.layers.Dropout(0.5)(o)  o = tf.keras.layers.Conv2D(n_classes,  (1, 1), activation='relu' , padding='same', data_format=IMAGE_ORDERING)(o)  # Upsample `o` above and crop any extra pixels introduced  o = tf.keras.layers.Conv2DTranspose(n_classes , kernel_size=(4,4) ,  strides=(2,2) , use_bias=False )(f5)  o = tf.keras.layers.Cropping2D(cropping=(1,1))(o)  # load the pool 4 prediction and do a 1x1 convolution to reshape it to the same shape of `o` above  o2 = f4  o2 = tf.keras.layers.Conv2D(n_classes , ( 1 , 1 ) , activation='relu' , padding='same')(o2)  # add the results of the upsampling and pool 4 prediction  o = tf.keras.layers.Add()([o, o2])  # upsample the resulting tensor of the operation you just did  o = tf.keras.layers.Conv2DTranspose( n_classes , kernel_size=(4,4) ,  strides=(2,2) , use_bias=False)(o)  o = tf.keras.layers.Cropping2D(cropping=(1, 1))(o)  # load the pool 3 prediction and do a 1x1 convolution to reshape it to the same shape of `o` above  o2 = tf.keras.layers.Conv2D(n_classes , ( 1 , 1 ) , activation='relu' , padding='same')(o2)  # add the results of the upsampling and pool 3 prediction  o = tf.keras.layers.Add()([o, o2])  # upsample up to the size of the original image  o = tf.keras.layers.Conv2DTranspose(n_classes , kernel_size=(8,8) ,  strides=(8,8) , use_bias=False )(o)  o = tf.keras.layers.Cropping2D(((0, 0), (0, 96-84)))(o)  # append a sigmoid activation  o = (tf.keras.layers.Activation('sigmoid'))(o)  return o

测试代码

# TEST CODEtest_convs, test_img_input = FCN8()test_fcn8_decoder = fcn8_decoder(test_convs, 11)print(test_fcn8_decoder.shape)del test_convs, test_img_input, test_fcn8_decoder

回答:

你必须先加载池3的预测,然后应用1*1卷积

def fcn8_decoder(convs, n_classes):

来自编码器阶段的特征

f3, f4, f5 = convs

过滤器数量

n = 512

在CNN提取器上添加卷积层

o = tf.keras.layers.Conv2D(n , (7 , 7) , activation=’relu’ , padding=’same’, name=”conv6″, data_format=IMAGE_ORDERING)(f5)o = tf.keras.layers.Dropout(0.5)(o)o = tf.keras.layers.Conv2D(n , (1 , 1) , activation=’relu’ , padding=’same’, name=”conv7″, data_format=IMAGE_ORDERING)(o)o = tf.keras.layers.Dropout(0.5)(o)o = tf.keras.layers.Conv2D(n_classes, (1, 1), activation=’relu’ , padding=’same’, data_format=IMAGE_ORDERING)(o)

上采样上述的o并裁剪任何多余的像素

o = tf.keras.layers.Conv2DTranspose(n_classes , kernel_size=(4,4) , strides=(2,2) , use_bias=False )(f5)o = tf.keras.layers.Cropping2D(cropping=(1,1))(o)

加载池4的预测并进行1×1卷积以重塑其形状与上述的o相同

o2 = f4o2 = tf.keras.layers.Conv2D(n_classes , ( 1 , 1 ) , activation=’relu’ , padding=’same’)(o2)

添加上采样和池4预测的结果

o = tf.keras.layers.Add()([o, o2])

上采样你刚刚执行的操作的输出张量

o = tf.keras.layers.Conv2DTranspose( n_classes , kernel_size=(4,4) , strides=(2,2) , use_bias=False)(o)o = tf.keras.layers.Cropping2D(cropping=(1, 1))(o)

加载池3的预测并进行1×1卷积以重塑其形状与上述的o相同

o2=f3o2 = tf.keras.layers.Conv2D(n_classes , ( 1 , 1 ) , activation=’relu’ , padding=’same’)(o2)

添加上采样和池3预测的结果

o = tf.keras.layers.Add()([o, o2])

上采样到原始图像的大小

o = tf.keras.layers.Conv2DTranspose(n_classes , kernel_size=(8,8) , strides=(8,8) , use_bias=False )(o)o = tf.keras.layers.Cropping2D(((0, 0), (0, 96-84)))(o)

添加一个Sigmoid激活函数

o = (tf.keras.layers.Activation(‘sigmoid’))(o)

return o

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注