我正在尝试编写自己的MNIST示例,该示例可以使用一台机器上的两个GPU。
这是一个简单的多层感知器。
这是我的代码。你可以直接运行它。
from tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("/tmp/data/", one_hot=True)import tensorflow as tflearning_rate = 0.001training_steps = 100000batch_size = 100display_step = 100n_hidden_1 = 256n_hidden_2 = 256n_input = 784n_classes = 10def _variable_on_cpu(name, shape, initializer): with tf.device('/cpu:0'): dtype = tf.float32 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype) return vardef build_model(): def multilayer_perceptron(x, weights, biases): layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] return out_layer with tf.variable_scope('aaa'): weights = { 'h1': _variable_on_cpu('h1',[n_input, n_hidden_1],tf.constant_initializer(0.0)), 'h2': _variable_on_cpu('h2',[n_hidden_1, n_hidden_2],tf.constant_initializer(0.0)), 'out': _variable_on_cpu('out_w',[n_hidden_2, n_classes],tf.constant_initializer(0.0)) } biases = { 'b1': _variable_on_cpu('b1',[n_hidden_1],tf.constant_initializer(0.0)), 'b2': _variable_on_cpu('b2',[n_hidden_2],tf.constant_initializer(0.0)), 'out': _variable_on_cpu('out_b',[n_classes],tf.constant_initializer(0.0)) } pred = multilayer_perceptron(x, weights, biases) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) return costdef average_gradients(tower_grads): average_grads = [] for grad_and_vars in zip(*tower_grads): grads = [] for g,_ in grad_and_vars: expanded_g = tf.expand_dims(g, 0) grads.append(expanded_g) grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_gradswith tf.Graph().as_default(), tf.device('/cpu:0'): x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) tower_grads = [] optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) with tf.variable_scope(tf.get_variable_scope()): for i in xrange(2): with tf.device('/gpu:%d' % i): cost = build_model() tf.get_variable_scope().reuse_variables() grads = optimizer.compute_gradients(cost) tower_grads.append(grads) grads = average_gradients(tower_grads) apply_gradient_op = optimizer.apply_gradients(grads) train_op = apply_gradient_op init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in range(training_steps): image_batch, label_batch = mnist.train.next_batch(batch_size) _, cost_print = sess.run([train_op, cost], {x:image_batch, y:label_batch}) if step % display_step == 0: print("step=%04d" % (step+1)+ " cost=" + str(cost_print)) print("Optimization Finished!") sess.close()
打印信息如下所示:
step=0001 cost=2.30258step=0101 cost=2.30246step=0201 cost=2.30128step=0301 cost=2.30376step=0401 cost=2.29817step=0501 cost=2.2992step=0601 cost=2.3104step=0701 cost=2.29995step=0801 cost=2.29802step=0901 cost=2.30524step=1001 cost=2.29673step=1101 cost=2.30016step=1201 cost=2.31057step=1301 cost=2.29815step=1401 cost=2.29669step=1501 cost=2.30345step=1601 cost=2.29811step=1701 cost=2.30867step=1801 cost=2.30757step=1901 cost=2.29716step=2001 cost=2.30394
损失值没有下降。我不知道如何修复这个问题。
顺便说一下,GPU使用率大约是26%和26%。如何提高GPU使用率?
回答:
问题在于,
我应该对weights
使用tf.constant_initializer(0.1)
而不是tf.constant_initializer(0)