我为我的计算机视觉问题构建了一个类似DenseNet/Unet的结构。但是当我将图像和掩码输入到model.fit()方法时,后台的Tensorflow在某个地方移除了我的输入的通道部分,从而向第一个卷积层发送了形状不正确的张量。
我的Image_list对象的形状为(切片数 x 1 x 512 x 512)。因此,每个切片的理想输入应该是1x512x512。
错误是:
WARNING:tensorflow:Model was constructed with shape (None, 1, 512, 512) for input Tensor("input_1:0", shape=(None, 1, 512, 512), dtype=float32), but it was called on an input with incompatible shape (None, 512, 512).
这让我认为可能输入层存在某些错误?
ValueError Traceback (most recent call last)<ipython-input-8-a8d0a842563e> in <module>() 1 #obj= ImageSequence(None, None,1)----> 2 model.fit(image_list,mask_list, epochs=1 )10 frames/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs) 106 def _method_wrapper(self, *args, **kwargs): 107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access--> 108 return method(self, *args, **kwargs) 109 110 # Running inside `run_distribute_coordinator` already./usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing) 1096 batch_size=batch_size): 1097 callbacks.on_train_batch_begin(step)-> 1098 tmp_logs = train_function(iterator) 1099 if data_handler.should_sync: 1100 context.async_wait()/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds) 778 else: 779 compiler = "nonXla"--> 780 result = self._call(*args, **kwds) 781 782 new_tracing_count = self._get_tracing_count()/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds) 821 # This is the first call of __call__, so we have to initialize. 822 initializers = []--> 823 self._initialize(args, kwds, add_initializers_to=initializers) 824 finally: 825 # At this point we know that the initialization is complete (or less/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to) 695 self._concrete_stateful_fn = ( 696 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access--> 697 *args, **kwds)) 698 699 def invalid_creator_scope(*unused_args, **unused_kwds):/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs) 2853 args, kwargs = None, None 2854 with self._lock:-> 2855 graph_function, _, _ = self._maybe_define_function(args, kwargs) 2856 return graph_function 2857 /usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs) 3211 3212 self._function_cache.missed.add(call_context_key)-> 3213 graph_function = self._create_graph_function(args, kwargs) 3214 self._function_cache.primary[cache_key] = graph_function 3215 return graph_function, args, kwargs/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 3073 arg_names=arg_names, 3074 override_flat_arg_shapes=override_flat_arg_shapes,-> 3075 capture_by_value=self._capture_by_value), 3076 self._function_attributes, 3077 function_spec=self.function_spec,/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) 984 _, original_func = tf_decorator.unwrap(python_func) 985 --> 986 func_outputs = python_func(*func_args, **func_kwargs) 987 988 # invariant: `func_outputs` contains only Tensors, CompositeTensors,/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds) 598 # __wrapped__ allows AutoGraph to swap in a converted function. We give 599 # the function a weak reference to itself to avoid a reference cycle.--> 600 return weak_wrapped_fn().__wrapped__(*args, **kwds) 601 weak_wrapped_fn = weakref.ref(wrapped_fn) 602 /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs) 971 except Exception as e: # pylint:disable=broad-except 972 if hasattr(e, "ag_error_metadata"):--> 973 raise e.ag_error_metadata.to_exception(e) 974 else: 975 raiseValueError: in user code: /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:806 train_function * return step_function(self, iterator) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:796 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1211 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica return fn(*args, **kwargs) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:789 run_step ** outputs = model.train_step(data) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:747 train_step y_pred = self(x, training=True) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__ outputs = call_fn(inputs, *args, **kwargs) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:386 call inputs, training=training, mask=mask) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph outputs = node.layer(*args, **kwargs) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__ self.name) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:196 assert_input_compatibility str(x.shape.as_list())) ValueError: Input 0 of layer conv2d is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 512, 512]
我的代码可以在这里找到
样本数据集:这里
回答:
你的数据生成器返回一个NumPy数组列表,一个数组列表可以被解释为多个输入。在调用model.fit()之前尝试将你的数据转换为张量形式:
`image_list = tf.convert_to_tensor(image_list)mask_list = tf.convert_to_tensor(mask_list)`