Tensorflow 重塑问题,ValueError: 无法为形状为(1, 2)的值馈送到形状为'(?, 1, 2)’的Tensor u’Placeholder:0′

我收到了这个错误消息:ValueError: 无法为形状为(1, 2)的值馈送到形状为'(?, 1, 2)’的Tensor u’Placeholder:0′

我的训练和测试数据有2个特征

[[10, 10],[1,2],[3,2]...]

我的目标数据如下所示:

[[0, 1], [1, 0], [1, 0]...]

这是我的代码:

training_data = np.vstack(training_data)training_target = np.vstack(training_target)test_data = np.vstack(test_data)test_target = np.vstack(test_target)learning_rate = 0.001n_input = 2  n_steps = 1  n_hidden = 128  n_classes = 2  # tf Graph inputx = tf.placeholder("float", [None, n_steps, n_input])y = tf.placeholder("float", [None, n_classes])# Define weightsweights = {    'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))}biases = {    'out': tf.Variable(tf.random_normal([n_classes]))}def RNN(x, weights, biases):    x = tf.unstack(x, n_steps, 1)    # Define a lstm cell with tensorflow    lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)    # Get lstm cell output    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)    # Linear activation, using rnn inner loop last output    return tf.matmul(outputs[-1], weights['out']) + biases['out']pred = RNN(x, weights, biases)# Define loss and optimizercost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)# Evaluate modelcorrect_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))# Initializing the variablesinit = tf.global_variables_initializer()# Launch the graphwith tf.Session() as sess:    sess.run(init)    step = 1    for i in range(len(training_data)):        batch_x = training_data[i]        batch_y = training_target[i]        print(batch_x)        print(batch_y)        batch_x = tf.reshape(batch_x, [1, 2]).eval()        print(batch_x)        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})        acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})        loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})        print("Iter " + str(step) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))    print("Optimization Finished!")    print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_target}))

我需要帮助来重塑数据,我还没有实现下一个批次的函数,只是想让这个工作起来。

没有包括我加载CSV文件的部分,…等等。

任何关于代码的评论都很好,谢谢你。


回答:

你试图馈送的数组不符合占位符的维度。例如,对于batch_x,你试图将[1, 2]馈送到[?, 1, 2],对于batch_y,你试图将[2]馈送到[?, 2]。如果你批次大小为1,你应该将[1, 1, 2]馈送到[?, 1, 2],将[1, 2]馈送到[?, 2]分别对应batch_x和batch_y。

batch_size = 1with tf.Session() as sess:    sess.run(init)    step = 1    for i in range(len(training_data)):        batch_x = training_data[i]        batch_y = training_target[i]        batch_x = np.reshape(batch_x, [batch_size, 1, 2])        batch_y = np.reshape(batch_y, [batch_size, 2])        [_, acc, loss] = sess.run([optimizer, accuracy, cost], feed_dict={x: batch_x, y: batch_y})        print("Iter " + str(step) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注