我正在使用AWS SageMaker的随机切割森林算法来检测异常。
import boto3import sagemakercontainers = { 'us-west-2': '174872318107.dkr.ecr.us-west-2.amazonaws.com/randomcutforest:latest', 'us-east-1': '382416733822.dkr.ecr.us-east-1.amazonaws.com/randomcutforest:latest', 'us-east-2': '404615174143.dkr.ecr.us-east-2.amazonaws.com/randomcutforest:latest', 'eu-west-1': '438346466558.dkr.ecr.eu-west-1.amazonaws.com/randomcutforest:latest', 'ap-southeast-1':'475088953585.dkr.ecr.ap-southeast-1.amazonaws.com/randomcutforest:latest' }region_name = boto3.Session().region_namecontainer = containers[region_name]session = sagemaker.Session()rcf = sagemaker.estimator.Estimator( container, sagemaker.get_execution_role(), output_path='s3://{}/{}/output'.format(bucket, prefix), train_instance_count=1, train_instance_type='ml.c5.xlarge', sagemaker_session=session)rcf.set_hyperparameters( num_samples_per_tree=200, num_trees=250, feature_dim=1, eval_metrics =["accuracy", "precision_recall_fscore"])s3_train_input = sagemaker.session.s3_input( s3_train_data, distribution='ShardedByS3Key', content_type='application/x-recordio-protobuf')rcf.fit({'train': s3_train_input})
使用上述代码训练了模型,但没有找到评估模型的方法。如何在部署模型后获取准确率和F分数?
回答:
为了获取评估指标,您需要在训练过程中提供一个额外的名为“test”的通道。测试通道必须包含带标签的数据。这在官方文档中有所解释,https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html :
Amazon SageMaker的随机切割森林支持训练和测试数据通道。可选的测试通道用于在带标签的数据上计算准确率、精确率、召回率和F1分数指标。训练和测试数据的内容类型可以是application/x-recordio-protobuf或text/csv格式。对于使用text/csv格式的测试数据,内容必须指定为text/csv;label_size=1,其中每行的第一列代表异常标签:“1”表示异常数据点,“0”表示正常数据点。您可以使用文件模式或管道模式在格式为recordIO-wrapped-protobuf或CSV的数据上训练RCF模型
另外请注意…测试通道仅支持S3DataDistributionType=FullyReplicated
谢谢,
Julio