std::function 使用中有性能问题,如何避免?

我有一些类,可以用来组合协方差函数(也称为核函数,请见 https://stats.stackexchange.com/questions/228552/covariance-functions-or-kernels-what-exactly-are-they),然后根据新的核函数计算协方差,例如:

auto C = GaussianKernel(50,60) + GaussianKernel(100,200);auto result = C.covarianceFunction(30.0,40.0);

但问题是我在计算协方差时调用了 std::function有没有简单的方法来避免它?
请注意,我需要计算一个大的协方差矩阵(大约50K*50K),这意味着性能非常重要。

以下是代码

class Kernel {public:     /*    Covariance function : return the covariance between two R.V. for the entire kernel's domain definition.     */    virtual double covarianceFunction(        double   X,        double   Y    )const = 0 ;    ~Kernel() = default;};class FooKernel : public Kernel {public:    FooKernel(std::function<double(double, double)> fun) : fun_(fun) {}    double covarianceFunction(        double   X,        double   Y    ) const {        return fun_(X, Y);    }    template<class T>    auto operator+(const T b) const {        return FooKernel([b, this](double X, double Y) -> double {            return this->covarianceFunction(X, Y) + b.covarianceFunction(X, Y);        });    }    FooKernel operator=(const FooKernel other) const {        return other;    }private:    std::function<double(double, double)> fun_;};class GaussianKernel : public Kernel {public:    GaussianKernel(double sigma, double scale) : m_sigma(sigma), m_scale(scale) {}    GaussianKernel(double sigma) : m_sigma(sigma), m_scale(1) {}    /*    A well known covariance function that enforces smooth deformations    Ref : Shape modeling using Gaussian process Morphable Models, Luethi et al.    */    double covarianceFunction(        double   X,        double   Y    ) const     {        //use diagonal matrix    doulbe result;    result = m_scale  *  exp(-std::norm(X - Y) / (m_sigma*m_sigma));    return result;          }    template<class T>    auto operator+(const T b) const {        return FooKernel([b, this](double X, double Y) -> double {            auto debugBval = b.covarianceFunction(X, Y);            auto debugAval = this->covarianceFunction(X, Y);            auto test = debugBval + debugAval;            return test;        });    }private:    double m_sigma;    double m_scale;};

回答:

通过对 FooKernel 使用模板化,你可以避免使用 std::function 的需要。

#include <iostream>#include <complex>#include <functional>class Kernel {public:     /*    Covariance function : return the covariance between two R.V. for the entire kernel's domain definition.     */    virtual double covarianceFunction(        double   X,        double   Y    )const = 0 ;    ~Kernel() = default;};template <typename Func>class FooKernel : public Kernel {public:    FooKernel(Func&& fun) : fun_(std::forward<Func>(fun)) {}    double covarianceFunction(        double   X,        double   Y    ) const {        return fun_(X, Y);    }    template<class T>    auto operator+(const T b) const {        return make_foo_kernel([b, this](double X, double Y) -> double {            return this->covarianceFunction(X, Y) + b.covarianceFunction(X, Y);        });    }    FooKernel operator=(const FooKernel other) const {        return other;    }private:   Func fun_;};template <typename Func>auto make_foo_kernel(Func&& fun){    return FooKernel<Func>(std::forward<Func>(fun));}class GaussianKernel : public Kernel {public:    GaussianKernel(double sigma, double scale) : m_sigma(sigma), m_scale(scale) {}    GaussianKernel(double sigma) : m_sigma(sigma), m_scale(1) {}    /*    A well known covariance function that enforces smooth deformations    Ref : Shape modeling using Gaussian process Morphable Models, Luethi et al.    */    double covarianceFunction(        double   X,        double   Y    ) const     {        //use diagonal matrix    double result;    result = m_scale  *  exp(-std::norm(X - Y) / (m_sigma*m_sigma));    return result;          }    template<class T>    auto operator+(const T b) const {        return make_foo_kernel([b, this](double X, double Y) -> double {            auto debugBval = b.covarianceFunction(X, Y);            auto debugAval = this->covarianceFunction(X, Y);            auto test = debugBval + debugAval;            return test;        });    }private:    double m_sigma;    double m_scale;};int main(){    auto C = GaussianKernel(50,60) + GaussianKernel(100,200);    auto result = C.covarianceFunction(30.0,40.0);    return 0;}

演示

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注