Spark ml pipeline在1.6版本中工作,但在2.0版本中无法工作。类型不匹配错误

大家好,我有以下在Spark 1.6中可以工作的代码。

import org.apache.spark.ml.feature.{ChiSqSelectorModel,QuantileDiscretizer,VectorAssembler,ChiSqSelector}
import org.apache.spark.sql.types.{StructType,StructField,IntegerType}
import org.apache.spark.storage.StorageLevel._
import org.apache.spark.ml.Pipeline
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import scala.util.Random
import scala.math
val nRows = 1000
val nCols = 100
val rD = sc.parallelize(0 to nRows-1,172).map { _ => Row.fromSeq(Seq.fill(nCols)(Random.nextInt(10))) }
val schema = StructType((0 to nCols-1).map { i => StructField("C" + i, IntegerType, true) } )
val df = spark.createDataFrame(rD, schema)
val continuous = df.drop("C0").dtypes.filter (_._2 != "StringType") map (_._1)
val discretizers = continuous .map(c => new QuantileDiscretizer().setInputCol(c).setOutputCol(s"${c}_disc").setNumBuckets(10))
val conDisc = continuous.map(c => s"${c}_disc")
val assembler = new  VectorAssembler().setInputCols(conDisc).setOutputCol("features")
val selector = new ChiSqSelector().setNumTopFeatures(100).setFeaturesCol("features").setLabelCol("C0").setOutputCol("selectedFeatures")
val pipeline = new Pipeline().setStages(Array.concat(discretizers.toArray, Array(assembler, selector)))
val model = pipeline.fit(df)

如何将其转换为在2.0版本中工作?问题似乎出在discretizers上。Spark抛出以下错误

 <console>:56: error: type mismatch; found   : Array[org.apache.spark.ml.feature.QuantileDiscretizer] required: Array[org.apache.spark.ml.PipelineStage with org.apache.spark.ml.para                                                                                                                         m.shared.HasOutputCol with org.apache.spark.ml.util.DefaultParamsWritable{def co                                                                                                                       py(extra: org.apache.spark.ml.param.ParamMap): org.apache.spark.ml.PipelineStage                                                                                                                      with org.apache.spark.ml.param.shared.HasOutputCol with org.apache.spark.ml.uti                                                                                                                     l.DefaultParamsWritable{def copy(extra: org.apache.spark.ml.param.ParamMap): org                                                                                                                     .apache.spark.ml.PipelineStage with org.apache.spark.ml.param.shared.HasOutputCo                                                                                                                     l with org.apache.spark.ml.util.DefaultParamsWritable}}] Note: org.apache.spark.ml.feature.QuantileDiscretizer <: org.apache.spark.ml.Pip                                                                                                                     elineStage with org.apache.spark.ml.param.shared.HasOutputCol with org.apache.sp                                                                                                                     ark.ml.util.DefaultParamsWritable{def copy(extra: org.apache.spark.ml.param.Para                                                                                                                     mMap): org.apache.spark.ml.PipelineStage with org.apache.spark.ml.param.shared.H                                                                                                                     asOutputCol with org.apache.spark.ml.util.DefaultParamsWritable{def copy(extra:                                                                                                                      org.apache.spark.ml.param.ParamMap): org.apache.spark.ml.PipelineStage with org.                                                                                                                     apache.spark.ml.param.shared.HasOutputCol with org.apache.spark.ml.util.DefaultP                                                                                                                     aramsWritable}}, but class Array is invariant in type T.     You may wish to investigate a wildcard type such as `_ <: org.apache.spark.ml.Pi                                                                                                                     pelineStage with org.apache.spark.ml.param.shared.HasOutputCol with org.apache.s                                                                                                                     park.ml.util.DefaultParamsWritable{def copy(extra: org.apache.spark.ml.param.Par                                                                                                                     amMap): org.apache.spark.ml.PipelineStage with org.apache.spark.ml.param.shared.                                                                                                                     HasOutputCol with org.apache.spark.ml.util.DefaultParamsWritable{def copy(extra:                                                                                                                      org.apache.spark.ml.param.ParamMap): org.apache.spark.ml.PipelineStage with org                                                                                                                     .apache.spark.ml.param.shared.HasOutputCol with org.apache.spark.ml.util.Default                                                                                                                     ParamsWritable}}`. (SLS 3.2.10)   val pipeline = new Pipeline().setStages(Array.concat(discretizers.toArray                                                                                                                     , Array(assembler, selector)))

感谢帮助。


回答:

希望这对你有帮助:

val pipeline = new Pipeline().setStages(discretizers ++ Array(assembler, selector))

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注