我刚开始学习Spark和机器学习。我成功地完成了Mllib的一些教程,但这个教程却无法正常运行:
(LinearRegressionWithSGD部分)
以下是代码:
import org.apache.spark.mllib.regression.LabeledPointimport org.apache.spark.mllib.regression.LinearRegressionModelimport org.apache.spark.mllib.regression.LinearRegressionWithSGDimport org.apache.spark.mllib.linalg.Vectors// Load and parse the dataval data = sc.textFile("data/mllib/ridge-data/lpsa.data")val parsedData = data.map { line => val parts = line.split(',') LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))}.cache()// Building the modelval numIterations = 100val model = LinearRegressionWithSGD.train(parsedData, numIterations)// Evaluate model on training examples and compute training errorval valuesAndPreds = parsedData.map { point => val prediction = model.predict(point.features) (point.label, prediction)}val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()println("training Mean Squared Error = " + MSE)// Save and load modelmodel.save(sc, "myModelPath")val sameModel = LinearRegressionModel.load(sc, "myModelPath")
(这正是网站上的内容)
结果是
training Mean Squared Error = 6.2087803138063045
以及
valuesAndPreds.collect
得到
Array[(Double, Double)] = Array((-0.4307829,-1.8383286021929077), (-0.1625189,-1.4955700806407322), (-0.1625189,-1.118820892849544), (-0.1625189,-1.6134108278724875), (0.3715636,-0.45171266551058276), (0.7654678,-1.861316066986158), (0.8544153,-0.3588282725617985), (1.2669476,-0.5036812148225209), (1.2669476,-1.1534698170911792), (1.2669476,-0.3561392231695041), (1.3480731,-0.7347031705813306), (1.446919,-0.08564658011814863), (1.4701758,-0.656725375080344), (1.4929041,-0.14020483324910105), (1.5581446,-1.9438858658143454), (1.5993876,-0.02181165554398845), (1.6389967,-0.3778677315868635), (1.6956156,-1.1710092824030043), (1.7137979,0.27583044213064634), (1.8000583,0.7812664902440078), (1.8484548,0.94605507153074), (1.8946169,-0.7217282082851512), (1.9242487,-0.24422843221437684),...
我的问题是预测结果看起来完全是随机的(而且是错误的),而且因为这是网站示例的完美复制,使用了相同的数据集(训练集),我不知道该从哪里查找问题,我是不是遗漏了什么?
请给我一些建议或线索,告诉我该从哪里开始查找,我可以阅读和实验。
谢谢
回答:
基于SGD的线性回归需要调整步长,详情请见http://spark.apache.org/docs/latest/mllib-optimization.html。
在你的例子中,如果你将步长设置为0.1,你会得到更好的结果(MSE = 0.5)。
import org.apache.spark.mllib.regression.LabeledPointimport org.apache.spark.mllib.regression.LinearRegressionModelimport org.apache.spark.mllib.regression.LinearRegressionWithSGDimport org.apache.spark.mllib.linalg.Vectors// Load and parse the dataval data = sc.textFile("data/mllib/ridge-data/lpsa.data")val parsedData = data.map { line => val parts = line.split(',') LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))}.cache()// Build the modelvar regression = new LinearRegressionWithSGD().setIntercept(true)regression.optimizer.setStepSize(0.1)val model = regression.run(parsedData)// Evaluate model on training examples and compute training errorval valuesAndPreds = parsedData.map { point => val prediction = model.predict(point.features) (point.label, prediction)}val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()println("training Mean Squared Error = " + MSE)
关于更现实数据集的另一个示例,请见