我再次在使用scikit-learn的轮廓系数时遇到了问题。(我的第一个问题在这里:在Python中使用sklearn计算轮廓系数)。我进行的聚类可能非常不平衡,但样本数量很多,所以我想使用轮廓系数的采样参数。我想知道子采样是否是分层的,意思是根据聚类进行采样。我以鸢尾花数据集为例,但我的数据集要大得多(这就是我需要采样的原因)。我的代码是:
from sklearn import datasetsfrom sklearn.metrics import *iris = datasets.load_iris()col = iris.feature_namesname = iris.target_namesX = pd.DataFrame(iris.data, columns = col)y = iris.targets = silhouette_score(X.values, y, metric='euclidean',sample_size=50)
这个代码是可以运行的。但是如果我这样修改它:
y[0:148] =0y[148] = 1y[149] = 2print ys = silhouette_score(X.values, y, metric='euclidean',sample_size=50)
我得到的错误是:
ValueError Traceback (most recent call last)<ipython-input-12-68a7fba49c54> in <module>() 4 y[149] =2 5 print y----> 6 s = silhouette_score(X.values, y, metric='euclidean',sample_size=50)/usr/local/lib/python2.7/dist-packages/sklearn/metrics/cluster/unsupervised.pyc in silhouette_score(X, labels, metric, sample_size, random_state, **kwds) 82 else: 83 X, labels = X[indices], labels[indices]---> 84 return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) 85 86 /usr/local/lib/python2.7/dist-packages/sklearn/metrics/cluster/unsupervised.pyc in silhouette_samples(X, labels, metric, **kwds) 146 for i in range(n)]) 147 B = np.array([_nearest_cluster_distance(distances[i], labels, i)--> 148 for i in range(n)]) 149 sil_samples = (B - A) / np.maximum(A, B) 150 # nan values are for clusters of size 1, and should be 0/usr/local/lib/python2.7/dist-packages/sklearn/metrics/cluster/unsupervised.pyc in _nearest_cluster_distance(distances_row, labels, i) 200 label = labels[i] 201 b = np.min([np.mean(distances_row[labels == cur_label])--> 202 for cur_label in set(labels) if not cur_label == label]) 203 return b/usr/lib/python2.7/dist-packages/numpy/core/fromnumeric.pyc in amin(a, axis, out, keepdims) 1980 except AttributeError: 1981 return _methods._amin(a, axis=axis,-> 1982 out=out, keepdims=keepdims) 1983 # NOTE: Dropping the keepdims parameter 1984 return amin(axis=axis, out=out)/usr/lib/python2.7/dist-packages/numpy/core/_methods.pyc in _amin(a, axis=None, out=None, keepdims=False) 12 def _amin(a, axis=None, out=None, keepdims=False): 13 return um.minimum.reduce(a, axis=axis,---> 14 out=out, keepdims=keepdims) 15 16 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):ValueError: zero-size array to reduction operation minimum which has no identity
我认为这个错误是由于采样是随机的而不是分层的,因此没有考虑到那两个较小的聚类。
我的理解正确吗?
回答:
我认为你是对的,当前的实现不支持平衡重采样。