sklearn中的K最近邻算法 – ValueError: 查询数据的维度必须与训练数据的维度匹配

我在尝试对从UCI机器学习数据库中找到的文本识别数据进行k最近邻预测。(https://archive.ics.uci.edu/ml/datasets/Letter+Recognition

我已经对数据进行了交叉验证,并测试了准确性,没有问题,但无法运行classifier.predict()。谁能解释一下我为什么会得到这个错误?我查看了sklearn网站上关于维度灾难的资料,但我很难真正修复我的代码。

到目前为止,我的代码如下:

import pandas as pdimport numpy as npfrom sklearn import preprocessing, cross_validation, neighborsdf = pd.read_csv('KMeans_letter_recog.csv')    X = np.array(df.drop(['Letter'], 1))y = np.array(df['Letter'])X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.2) #20% data usedclf = neighbors.KNeighborsClassifier()clf.fit(X_train, y_train)accuracy = clf.score(X_test, y_test) #testprint(accuracy) #this works fineexample = np.array([7,4,3,2,4,5,3,6,7,4,2,3,5,6,8,4])example = X.reshape(len(example), -1)prediction = clf.predict(example)print(prediction) #error

df.head() 输出如下:

 Letter   x-box   y-box   box_width   box_height   on_pix   x-bar_mean  \0      T       2       8           3            5        1            8   1      I       5      12           3            7        2           10   2      D       4      11           6            8        6           10   3      N       7      11           6            6        3            5   4      G       2       1           3            1        1            8       y-bar_mean   x2bar_mean   y2bar_mean   xybar_mean   x2y_mean   xy2_mean  \0           13            0            6            6         10          8   1            5            5            4           13          3          9   2            6            2            6           10          3          7   3            9            4            6            4          4         10   4            6            6            6            6          5          9       x-ege   xegvy   y-ege   yegvx  0       0       8       0       8  1       2       8       4      10  2       3       7       3       9  3       6      10       2       8  4       1       7       5      10  

我的错误信息如下:

Traceback (most recent call last):  File "C:\Users\jai_j\Desktop\Python Projects\K Means ML.py", line 31, in <module>    prediction = clf.predict(example)  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\neighbors\classification.py", line 145, in predict    neigh_dist, neigh_ind = self.kneighbors(X)  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\neighbors\base.py", line 381, in kneighbors    for s in gen_even_slices(X.shape[0], n_jobs)  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 758, in __call__    while self.dispatch_one_batch(iterator):  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 608, in dispatch_one_batch    self._dispatch(tasks)  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 571, in _dispatch    job = self._backend.apply_async(batch, callback=cb)  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 109, in apply_async    result = ImmediateResult(func)  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 326, in __init__    self.results = batch()  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in __call__    return [func(*args, **kwargs) for func, args, kwargs in self.items]  File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in <listcomp>    return [func(*args, **kwargs) for func, args, kwargs in self.items]  File "sklearn\neighbors\binary_tree.pxi", line 1294, in sklearn.neighbors.kd_tree.BinaryTree.query (sklearn\neighbors\kd_tree.c:11325)ValueError: query data dimension must match training data dimension

提前感谢任何帮助,我会继续寻找答案。


回答:

你的问题在于你没有正确地重塑example,并且你重塑的维度不正确。你将X数组重塑为(16, N),其中NX中的观测数量。

因此,当你尝试在example上进行预测时,你实际上是在使用你的分类器对重塑为N列的X进行预测,而不是像你训练时那样有16列。

看起来你想对单个示例进行预测,所以你应该重塑example而不是X。你可能想要example = example.reshape(1, -1)而不是example = X.reshape(len(example), -1)

最初,你创建了形状为(16,)example。你应该将它重塑为(1, 16),通过使用(1, -1)作为维度。这样会得到一个形状为(1, 16)的数组,这符合你的分类器的要求。

明确地说,试着将你的代码改成这样:

example = np.array([7,4,3,2,4,5,3,6,7,4,2,3,5,6,8,4])example = example.reshape(1, -1)prediction = clf.predict(example)print(prediction) # 应该不会再报错

Related Posts

Keras Dense层输入未被展平

这是我的测试代码: from keras import…

无法将分类变量输入随机森林

我有10个分类变量和3个数值变量。我在分割后直接将它们…

如何在Keras中对每个输出应用Sigmoid函数?

这是我代码的一部分。 model = Sequenti…

如何选择类概率的最佳阈值?

我的神经网络输出是一个用于多标签分类的预测类概率表: …

在Keras中使用深度学习得到不同的结果

我按照一个教程使用Keras中的深度神经网络进行文本分…

‘MatMul’操作的输入’b’类型为float32,与参数’a’的类型float64不匹配

我写了一个简单的TensorFlow代码,但不断遇到T…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注