我已经训练了一个用于主题分类的模型。然后当我准备将新数据转换为向量进行预测时,出现了问题。它显示”NotFittedError: CountVectorizer – Vocabulary wasn’t fitted.” 但当我在训练模型中将训练数据分割成测试数据进行预测时,它是正常工作的。以下是代码:
from sklearn.externals import joblibfrom sklearn.feature_extraction.text import CountVectorizerimport pandas as pdimport numpy as np# 读取新数据集testdf = pd.read_csv('C://Users/KW198/Documents/topic_model/training_data/testdata.csv', encoding='cp950')testdf.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 1800 entries, 0 to 1799Data columns (total 2 columns):keywords 1800 non-null objecttopics 1800 non-null int64dtypes: int64(1), object(1)memory usage: 28.2+ KB# 读取列kw = testdf['keywords']label = testdf['topics']# 将预测数据转换为向量vectorizer = CountVectorizer(min_df=1, stop_words='english')x_testkw_vec = vectorizer.transform(kw)
这里是错误信息
---------------------------------------------------------------------------NotFittedError Traceback (most recent call last)<ipython-input-93-cfcc7201e0f8> in <module>() 1 # 将预测数据转换为向量 2 vectorizer = CountVectorizer(min_df=1, stop_words='english')----> 3 x_testkw_vec = vectorizer.transform(kw)~\Anaconda3\envs\ztdl\lib\site-packages\sklearn\feature_extraction\text.py in transform(self, raw_documents) 918 self._validate_vocabulary() 919 --> 920 self._check_vocabulary() 921 922 # use the same matrix-building strategy as fit_transform~\Anaconda3\envs\ztdl\lib\site-packages\sklearn\feature_extraction\text.py in _check_vocabulary(self) 301 """Check if vocabulary is empty or missing (not fit-ed)""" 302 msg = "%(name)s - Vocabulary wasn't fitted."--> 303 check_is_fitted(self, 'vocabulary_', msg=msg), 304 305 if len(self.vocabulary_) == 0:~\Anaconda3\envs\ztdl\lib\site-packages\sklearn\utils\validation.py in check_is_fitted(estimator, attributes, msg, all_or_any) 766 767 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):--> 768 raise NotFittedError(msg % {'name': type(estimator).__name__}) 769 770 NotFittedError: CountVectorizer - Vocabulary wasn't fitted.
回答:
你需要调用vectorizer.fit()
来构建单词词典,然后再调用vectorizer.transform()
。你也可以直接调用vectorizer.fit_transform()
,这结合了上述两个步骤。
但是你不应该为测试或任何推理使用新的向量化器。你需要使用训练模型时使用的同一个向量化器,否则你的结果将是随机的,因为词汇表不同(缺少某些词,不具有相同的对齐等)。
为此,你可以将训练中使用的向量化器pickle化,并在推理/测试时加载它。