sklearn 多重线性回归 –> 数据类型错误

我在尝试使用线性回归模型预测一个值。然而,当我使用 sklearn 的 .predict 函数时,我无法找到一种方法来输入 X 的数据而不导致数据类型错误。

from sklearn import linear_modelKitchenQual_X = KitchenQual_df[["OverallQual", "YearBuilt", "YearRemodAdd", "GarageCars", "GarageArea"]]KitchenQual_Y = KitchenQual_df["dummy_KitchenQual"]regr_KitchenQual = linear_model.LinearRegression()regr_KitchenQual.fit(KitchenQual_X, KitchenQual_Y)print("Predicted missing KitchenQual value: " + regr_KitchenQual.predict(df_both[["OverallQual", "YearBuilt", "YearRemodAdd", "GarageCars", "GarageArea"]].loc[[1555]]))

在我的 Kaggle 笔记本中运行代码时,我收到了以下错误:

---------------------------------------------------------------------------UFuncTypeError                            Traceback (most recent call last)<ipython-input-206-1f022a48e21c> in <module>----> 1 print("Predicted missing KitchenQual value: " + regr_KitchenQual.predict(df_both[["OverallQual", "YearBuilt", "YearRemodAdd", "GarageCars", "GarageArea"]].loc[[1555]]))UFuncTypeError: ufunc 'add' did not contain a loop with signature matching types (dtype('<U37'), dtype('<U37')) -> dtype('<U37')

任何帮助我都会非常感激 🙂


回答:

假设你的因变量是连续的,使用示例数据并重复你的步骤:

from sklearn import linear_modelimport numpy as npimport pandas as pdKitchenQual_df = pd.DataFrame(np.random.normal(0,1,(2000,6)))KitchenQual_df.columns = ["OverallQual", "YearBuilt", "YearRemodAdd", "GarageCars", "GarageArea","dummy_KitchenQual"]KitchenQual_X = KitchenQual_df[["OverallQual", "YearBuilt", "YearRemodAdd", "GarageCars", "GarageArea"]]KitchenQual_Y = KitchenQual_df["dummy_KitchenQual"]regr_KitchenQual = linear_model.LinearRegression()regr_KitchenQual.fit(KitchenQual_X, KitchenQual_Y)pred = regr_KitchenQual.predict(KitchenQual_df[["OverallQual", "YearBuilt", "YearRemodAdd", "GarageCars", "GarageArea"]].loc[[1555]])

预测结果是一个数组,你不能直接使用 + 将字符串和数组连接起来,以下负面示例会给你相同的错误:

"a" + np.array(['b','c'])"a" + np.array([1,2])UFuncTypeError: ufunc 'add' did not contain a loop with signature matching types (dtype('<U1'), dtype('<U1')) -> dtype('<U1')

你可以这样做:

print("Predicted missing KitchenQual value: " + str(pred[0]))Predicted missing KitchenQual value: -0.11176904834490986

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注