顺序特征选择器 ValueError: 不支持连续格式

我刚开始学习机器学习,正在尝试理解 sklearn 中的顺序特征选择器概念。我使用 Anaconda 和 Jupyter 笔记本进行概念验证。我已经导入了

from mlxtend.feature_selection import SequentialFeatureSelector as SFS

包。默认情况下,mlxtend 包不是 Anaconda 的一部分,然后我通过 pip install mlxtend 命令安装了它。

我使用 sklearn 的波士顿房价数据集进行了这个概念验证,并执行了下面的代码。在拟合 sfs 时,我遇到了错误。

如何修复这个错误?

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsfrom mlxtend.feature_selection import SequentialFeatureSelector as sfsfrom sklearn.metrics import roc_curve, roc_auc_score%matplotlib inlinedata = load_boston()print(data.keys())X = pd.DataFrame(data.data)X.columns = data.feature_namesy = data.targetX_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)sfs1=sfs(RandomForestRegressor(n_jobs=1),    k_features=7,    forward=True,    floating=False,    verbose=3,    scoring='roc_auc',    cv=3   )sfs1=sfs1.fit(X_train,y_train)

错误

ValueError                                Traceback (most recent call last)<ipython-input-77-96b29660189d> in <module>      1 #sfs1.fit(X_train,y_train)      2 X_train.shape----> 3 sfs2=sfs1.fit(X_train,y_train)C:\ProgramData\Anaconda3\lib\site-packages\mlxtend\feature_selection\sequential_feature_selector.py in fit(self, X, y, custom_feature_names, **fit_params)    371                         X=X_,    372                         y=y,--> 373                         **fit_params    374                     )    375                 else:C:\ProgramData\Anaconda3\lib\site-packages\mlxtend\feature_selection\sequential_feature_selector.py in _inclusion(self, orig_set, subset, X, y, ignore_feature, **fit_params)    528                              tuple(subset | {feature}),    529                              **fit_params)--> 530                             for feature in remaining    531                             if feature != ignore_feature)    532 C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)    915             # remaining jobs.    916             self._iterating = False--> 917             if self.dispatch_one_batch(iterator):    918                 self._iterating = self._original_iterator is not None    919 C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in dispatch_one_batch(self, iterator)    757                 return False    758             else:--> 759                 self._dispatch(tasks)    760                 return True    761 C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in _dispatch(self, batch)    714         with self._lock:    715             job_idx = len(self._jobs)--> 716             job = self._backend.apply_async(batch, callback=cb)    717             # A job can complete so quickly than its callback is    718             # called before we get here, causing self._jobs toC:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in apply_async(self, func, callback)    180     def apply_async(self, func, callback=None):    181         """Schedule a func to be run"""--> 182         result = ImmediateResult(func)    183         if callback:    184             callback(result)C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in __init__(self, batch)    547         # Don't delay the application, to avoid keeping the input    548         # arguments in memory--> 549         self.results = batch()    550     551     def get(self):C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self)    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):    224             return [func(*args, **kwargs)--> 225                     for func, args, kwargs in self.items]    226     227     def __len__(self):C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0)    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):    224             return [func(*args, **kwargs)--> 225                     for func, args, kwargs in self.items]    226     227     def __len__(self):C:\ProgramData\Anaconda3\lib\site-packages\mlxtend\feature_selection\sequential_feature_selector.py in _calc_score(selector, X, y, indices, **fit_params)     32                                  n_jobs=1,     33                                  pre_dispatch=selector.pre_dispatch,---> 34                                  fit_params=fit_params)     35     else:     36         selector.est_.fit(X[:, indices], y, **fit_params)C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, error_score)    400                                 fit_params=fit_params,    401                                 pre_dispatch=pre_dispatch,--> 402                                 error_score=error_score)    403     return cv_results['test_score']    404 C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score)    238             return_times=True, return_estimator=return_estimator,    239             error_score=error_score)--> 240         for train, test in cv.split(X, y, groups))    241     242     zipped_scores = list(zip(*scores))C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)    915             # remaining jobs.    916             self._iterating = False--> 917             if self.dispatch_one_batch(iterator):    918                 self._iterating = self._original_iterator is not None    919 C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in dispatch_one_batch(self, iterator)    757                 return False    758             else:--> 759                 self._dispatch(tasks)    760                 return True    761 C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in _dispatch(self, batch)    714         with self._lock:    715             job_idx = len(self._jobs)--> 716             job = self._backend.apply_async(batch, callback=cb)    717             # A job can complete so quickly than its callback is    718             # called before we get here, causing self._jobs toC:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in apply_async(self, func, callback)    180     def apply_async(self, func, callback=None):    181         """Schedule a func to be run"""--> 182         result = ImmediateResult(func)    183         if callback:    184             callback(result)C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in __init__(self, batch)    547         # Don't delay the application, to avoid keeping the input    548         # arguments in memory--> 549         self.results = batch()    550     551     def get(self):C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self)    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):    224             return [func(*args, **kwargs)--> 225                     for func, args, kwargs in self.items]    226     227     def __len__(self):C:\ProgramData\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0)    223         with parallel_backend(self._backend, n_jobs=self._n_jobs):    224             return [func(*args, **kwargs)--> 225                     for func, args, kwargs in self.items]    226     227     def __len__(self):C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score)    566         fit_time = time.time() - start_time    567         # _score will return dict if is_multimetric is True--> 568         test_scores = _score(estimator, X_test, y_test, scorer, is_multimetric)    569         score_time = time.time() - start_time - fit_time    570         if return_train_score:C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _score(estimator, X_test, y_test, scorer, is_multimetric)    603     """    604     if is_multimetric:--> 605         return _multimetric_score(estimator, X_test, y_test, scorer)    606     else:    607         if y_test is None:C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _multimetric_score(estimator, X_test, y_test, scorers)    633             score = scorer(estimator, X_test)    634         else:--> 635             score = scorer(estimator, X_test, y_test)    636     637         if hasattr(score, 'item'):C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\scorer.py in __call__(self, clf, X, y, sample_weight)    174         y_type = type_of_target(y)    175         if y_type not in ("binary", "multilabel-indicator"):--> 176             raise ValueError("{0} format is not supported".format(y_type))    177     178         if is_regressor(clf):ValueError: continuous format is not supported

回答:

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注