我有一个750×256的数据样本。
Rows = 750Columns = 256
如果我将数据拆分为20%,那么X_train
将有600个样本,而y_train
将有150个样本。
然后在使用decisionTreeRegressor
时会出现问题
它会显示Number of y_train=150 does not match number of samples=600
但是如果我将测试集大小设为50%,它就能正常工作。有没有办法解决这个问题?我不想使用50%的测试集大小。
任何帮助都将不胜感激!
这是我的代码:
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport graphviz#Load the datadataset = pd.read_csv('new_york.csv')dataset['Higher'] = dataset['2016-12'].gt(dataset['2016-11']).astype(int)X = dataset.iloc[:, 6:254].valuesy = dataset.iloc[:, 255].values#Taking care of missing datafrom sklearn.preprocessing import Imputerimputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)imputer = imputer.fit(X[:, :248])X[:, :248] = imputer.transform(X[:, :248])#Split the data into train and test setsfrom sklearn.cross_validation import train_test_splitX_train, X_test, y_test, y_train = train_test_split(X, y, test_size = .2, random_state = 0)#let's build our first modelfrom sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, export_graphvizclf = DecisionTreeClassifier(max_depth=6)clf.fit(X_train, y_train)clf.score(X_train, y_train)
回答:
train_test_split()
返回X_train, X_test, y_train, y_test
,你把y_train
和y_test
的顺序搞错了。
如果你使用50%的拆分比例,不会导致错误,因为y_train
和y_test
将具有相同的大小(但显然是错误的值)。