我正在尝试重现使用神经网络降低数据维度一文中,使用自动编码器对olivetti人脸数据集进行处理的结果。我使用的是MNIST数字集的matlab代码的修改版本,但我遇到了一些困难。无论我如何调整epoch的数量、学习率或动量,堆叠的RBMs在进入微调阶段时都存在大量误差,因此在微调阶段很难有显著改善。我在另一个实值数据集上也遇到了类似的问题。
对于第一层,我使用了一个具有较小学习率的RBM(如论文中所述),并且有:
negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);
我相当确信我正在按照补充材料中的说明进行操作,但我无法获得正确的误差值。
我是否遗漏了什么? 请看下面我用于实值可见单元RBMs的代码,以及整个深度训练的代码。 其余代码可以在这里找到。
rbmvislinear.m:
epsilonw = 0.001; % Learning rate for weights epsilonvb = 0.001; % Learning rate for biases of visible unitsepsilonhb = 0.001; % Learning rate for biases of hidden units weightcost = 0.0002; initialmomentum = 0.5;finalmomentum = 0.9;[numcases numdims numbatches]=size(batchdata);if restart ==1, restart=0; epoch=1;% Initializing symmetric weights and biases. vishid = 0.1*randn(numdims, numhid); hidbiases = zeros(1,numhid); visbiases = zeros(1,numdims); poshidprobs = zeros(numcases,numhid); neghidprobs = zeros(numcases,numhid); posprods = zeros(numdims,numhid); negprods = zeros(numdims,numhid); vishidinc = zeros(numdims,numhid); hidbiasinc = zeros(1,numhid); visbiasinc = zeros(1,numdims); sigmainc = zeros(1,numhid); batchposhidprobs=zeros(numcases,numhid,numbatches);endfor epoch = epoch:maxepoch, fprintf(1,'epoch %d\r',epoch); errsum=0; for batch = 1:numbatches, if (mod(batch,100)==0) fprintf(1,' %d ',batch); end%%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% data = batchdata(:,:,batch); poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1))); batchposhidprobs(:,:,batch)=poshidprobs; posprods = data' * poshidprobs; poshidact = sum(poshidprobs); posvisact = sum(data);%%%%%%%%% END OF POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% poshidstates = poshidprobs > rand(numcases,numhid);%%%%%%%%% START NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);% + randn(numcases,numdims) if not using mean neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1))); negprods = negdata'*neghidprobs; neghidact = sum(neghidprobs); negvisact = sum(negdata); %%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% err= sum(sum( (data-negdata).^2 )); errsum = err + errsum; if epoch>5, momentum=finalmomentum; else momentum=initialmomentum; end;%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vishidinc = momentum*vishidinc + ... epsilonw*( (posprods-negprods)/numcases - weightcost*vishid); visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact); hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact); vishid = vishid + vishidinc; visbiases = visbiases + visbiasinc; hidbiases = hidbiases + hidbiasinc;%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% endfprintf(1, '\nepoch %4i error %f \n', epoch, errsum);end
dofacedeepauto.m:
clear allclose allmaxepoch=200; %In the Science paper we use maxepoch=50, but it works just fine. numhid=2000; numpen=1000; numpen2=500; numopen=30;fprintf(1,'Pretraining a deep autoencoder. \n');fprintf(1,'The Science paper used 50 epochs. This uses %3i \n', maxepoch);load fdata%makeFaceData;[numcases numdims numbatches]=size(batchdata);fprintf(1,'Pretraining Layer 1 with RBM: %d-%d \n',numdims,numhid);restart=1;rbmvislinear;hidrecbiases=hidbiases; save mnistvh vishid hidrecbiases visbiases;maxepoch=50;fprintf(1,'\nPretraining Layer 2 with RBM: %d-%d \n',numhid,numpen);batchdata=batchposhidprobs;numhid=numpen;restart=1;rbm;hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases;save mnisthp hidpen penrecbiases hidgenbiases;fprintf(1,'\nPretraining Layer 3 with RBM: %d-%d \n',numpen,numpen2);batchdata=batchposhidprobs;numhid=numpen2;restart=1;rbm;hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases;save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2;fprintf(1,'\nPretraining Layer 4 with RBM: %d-%d \n',numpen2,numopen);batchdata=batchposhidprobs;numhid=numopen; restart=1;rbmhidlinear;hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases;save mnistpo hidtop toprecbiases topgenbiases;backpropface;
感谢您的时间
回答:
真傻,我忘记更改反向传播微调脚本 (backprop.m) 了。 必须将输出层(重建人脸的地方)更改为实值单位。 即:
dataout = w7probs*w8;