使用自编码器时形状不兼容

我在尝试对时间序列数据使用自编码器。当我在数据上使用填充时,一切正常,但当我使用可变长度数据时,会遇到一些小的数据形状问题: Incompatible shapes: [1,125,4] vs. [1,126,4]

input_series = Input(shape=(None, 4))x = Conv1D(4, 2, activation='relu', padding='same')(input_series)x = MaxPooling1D(1, padding='same')(x)x = Conv1D(4, 3, activation='relu', padding='same')(x)x = MaxPooling1D(1, padding='same')(x)x = Conv1D(4, 3, activation='relu', padding='same')(x)encoder = MaxPooling1D(1, padding='same', name='encoder')(x)x = Conv1D(4, 3, activation='relu', padding='same')(encoder)x = UpSampling1D(1)(x)x = Conv1D(4, 3, activation='relu', padding='same')(x)x = UpSampling1D(1)(x)x = Conv1D(16, 2, activation='relu')(x)x = UpSampling1D(1)(x)decoder = Conv1D(4, 2, activation='sigmoid', padding='same')(x)autoencoder = Model(input_series, decoder)autoencoder.compile(loss='mse', optimizer='adam')autoencoder.summary()

摘要:

_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================input_25 (InputLayer)        (None, None, 4)           0         _________________________________________________________________conv1d_169 (Conv1D)          (None, None, 4)           36        _________________________________________________________________max_pooling1d_49 (MaxPooling (None, None, 4)           0         _________________________________________________________________conv1d_170 (Conv1D)          (None, None, 4)           52        _________________________________________________________________max_pooling1d_50 (MaxPooling (None, None, 4)           0         _________________________________________________________________conv1d_171 (Conv1D)          (None, None, 4)           52        _________________________________________________________________encoder (MaxPooling1D)       (None, None, 4)           0         _________________________________________________________________conv1d_172 (Conv1D)          (None, None, 4)           52        _________________________________________________________________up_sampling1d_73 (UpSampling (None, None, 4)           0         _________________________________________________________________conv1d_173 (Conv1D)          (None, None, 4)           52        _________________________________________________________________up_sampling1d_74 (UpSampling (None, None, 4)           0         _________________________________________________________________conv1d_174 (Conv1D)          (None, None, 16)          144       _________________________________________________________________up_sampling1d_75 (UpSampling (None, None, 16)          0         _________________________________________________________________conv1d_175 (Conv1D)          (None, None, 4)           132       =================================================================Total params: 520Trainable params: 520Non-trainable params: 0_________________________________________________________________

错误:

Epoch 1/50---------------------------------------------------------------------------InvalidArgumentError                      Traceback (most recent call last)C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)   1321     try:-> 1322       return fn(*args)   1323     except errors.OpError as e:C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)   1306       return self._call_tf_sessionrun(-> 1307           options, feed_dict, fetch_list, target_list, run_metadata)   1308 C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata)   1408           self._session, options, feed_dict, fetch_list, target_list,-> 1409           run_metadata)   1410     else:InvalidArgumentError: Incompatible shapes: [1,125,4] vs. [1,126,4]     [[Node: loss_22/conv1d_175_loss/sub = Sub[T=DT_FLOAT, _class=["loc:@training_18/Adam/gradients/loss_22/conv1d_175_loss/sub_grad/Reshape"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](conv1d_175/Sigmoid, _arg_conv1d_175_target_0_1/_4489)]]     [[Node: loss_22/mul/_4613 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1245_loss_22/mul", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]During handling of the above exception, another exception occurred:InvalidArgumentError                      Traceback (most recent call last)<ipython-input-101-a6e405699326> in <module>()      6     train_generator(X_train),      7     epochs=50,----> 8     steps_per_epoch=len(X_train))      9      10 C:\ProgramData\Anaconda3\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)     89                 warnings.warn('Update your `' + object_name +     90                               '` call to the Keras 2 API: ' + signature, stacklevel=2)---> 91             return func(*args, **kwargs)     92         wrapper._original_function = func     93         return wrapperC:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)   2228                     outs = self.train_on_batch(x, y,   2229                                                sample_weight=sample_weight,-> 2230                                                class_weight=class_weight)   2231    2232                     if not isinstance(outs, list):C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py in train_on_batch(self, x, y, sample_weight, class_weight)   1881             ins = x + y + sample_weights   1882         self._make_train_function()-> 1883         outputs = self.train_function(ins)   1884         if len(outputs) == 1:   1885             return outputs[0]C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in __call__(self, inputs)   2480         session = get_session()   2481         updated = session.run(fetches=fetches, feed_dict=feed_dict,-> 2482                               **self.session_kwargs)   2483         return updated[:len(self.outputs)]   2484 C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)    898     try:    899       result = self._run(None, fetches, feed_dict, options_ptr,--> 900                          run_metadata_ptr)    901       if run_metadata:    902         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)   1133     if final_fetches or final_targets or (handle and feed_dict_tensor):   1134       results = self._do_run(handle, final_targets, final_fetches,-> 1135                              feed_dict_tensor, options, run_metadata)   1136     else:   1137       results = []C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)   1314     if handle is None:   1315       return self._do_call(_run_fn, feeds, fetches, targets, options,-> 1316                            run_metadata)   1317     else:   1318       return self._do_call(_prun_fn, handle, feeds, fetches)C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)   1333         except KeyError:   1334           pass-> 1335       raise type(e)(node_def, op, message)   1336    1337   def _extend_graph(self):InvalidArgumentError: Incompatible shapes: [1,125,4] vs. [1,126,4]     [[Node: loss_22/conv1d_175_loss/sub = Sub[T=DT_FLOAT, _class=["loc:@training_18/Adam/gradients/loss_22/conv1d_175_loss/sub_grad/Reshape"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](conv1d_175/Sigmoid, _arg_conv1d_175_target_0_1/_4489)]]     [[Node: loss_22/mul/_4613 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1245_loss_22/mul", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]Caused by op 'loss_22/conv1d_175_loss/sub', defined at:  File "C:\ProgramData\Anaconda3\lib\runpy.py", line 193, in _run_module_as_main    "__main__", mod_spec)  File "C:\ProgramData\Anaconda3\lib\runpy.py", line 85, in _run_code    exec(code, run_globals)  File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py", line 16, in <module>    app.launch_new_instance()  File "C:\ProgramData\Anaconda3\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance    app.start()  File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 478, in start    self.io_loop.start()  File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start    super(ZMQIOLoop, self).start()  File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\ioloop.py", line 888, in start    handler_func(fd_obj, events)  File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper    return fn(*args, **kwargs)  File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events    self._handle_recv()  File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv    self._run_callback(callback, msg)  File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback    callback(*args, **kwargs)  File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper    return fn(*args, **kwargs)  File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher    return self.dispatch_shell(stream, msg)  File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 233, in dispatch_shell    handler(stream, idents, msg)  File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request    user_expressions, allow_stdin)  File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 208, in do_execute    res = shell.run_cell(code, store_history=store_history, silent=silent)  File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 537, in run_cell    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)  File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2728, in run_cell    interactivity=interactivity, compiler=compiler, result=result)  File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2850, in run_ast_nodes    if self.run_code(code, result):  File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2910, in run_code    exec(code_obj, self.user_global_ns, self.user_ns)  File "<ipython-input-100-ddd3b57d5f0b>", line 22, in <module>    autoencoder.compile(loss='mse', optimizer='adam')  File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 830, in compile    sample_weight, mask)  File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 429, in weighted    score_array = fn(y_true, y_pred)  File "C:\ProgramData\Anaconda3\lib\site-packages\keras\losses.py", line 14, in mean_squared_error    return K.mean(K.square(y_pred - y_true), axis=-1)  File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py", line 979, in binary_op_wrapper    return func(x, y, name=name)  File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 8582, in sub    "Sub", x=x, y=y, name=name)  File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper    op_def=op_def)  File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3392, in create_op    op_def=op_def)  File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-accessInvalidArgumentError (see above for traceback): Incompatible shapes: [1,125,4] vs. [1,126,4]     [[Node: loss_22/conv1d_175_loss/sub = Sub[T=DT_FLOAT, _class=["loc:@training_18/Adam/gradients/loss_22/conv1d_175_loss/sub_grad/Reshape"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](conv1d_175/Sigmoid, _arg_conv1d_175_target_0_1/_4489)]]     [[Node: loss_22/mul/_4613 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1245_loss_22/mul", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

回答:

你的一个 Conv1D 层没有使用 padding='same'

但这里有一个非常奇怪的地方:为什么你要使用 MaxPooling 并且 pool_size=1?它没有任何作用。


现在假设你使用 pool_size=2,那么你仍然需要对输入进行填充,因为你需要输入的长度是8(2³)的倍数,才能在上采样后得到相同的形状。


对于可变长度的自编码器,这里有一个示例: Keras中的可变长度输出

实际上,LSTM层处理形状的方式与Conv1D层完全相同。

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注