我正在尝试使用VGG16网络来处理多个输入图像。使用一个简单的神经网络模型处理两个输入图像时,训练得到的准确率大约为50%,因此我想尝试使用像VGG16这样的成熟模型。
以下是我尝试过的方法:
# importsfrom keras.applications.vgg16 import VGG16from keras.models import Modelfrom keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Densedef def_model(): model = VGG16(include_top=False, input_shape=(224, 224, 3)) # 标记加载的层为不可训练 for layer in model.layers: layer.trainable = False # 返回最后的池化层 pool_layer = model.layers[-1].output return pool_layerm1 = def_model()m2 = def_model() m3 = def_model()# 添加分类层merge = concatenate([m1, m2, m3])# optinal_conv = Conv2D(64, (3, 3), activation='relu', padding='same')(merge)# optinal_pool = MaxPooling2D(pool_size=(2, 2))(optinal_conv)# flatten = Flatten()(optinal_pool)flatten = Flatten()(merge)dense1 = Dense(512, activation='relu')(flatten)dense2 = Dropout(0.5)(dense1)output = Dense(1, activation='sigmoid')(dense2)inshape1 = Input(shape=(224, 224, 3))inshape2 = Input(shape=(224, 224, 3))inshape3 = Input(shape=(224, 224, 3))model = Model(inputs=[inshape1, inshape2, inshape3], outputs=output)
- 在调用
Model
函数时,我遇到了以下错误。
ValueError: Graph disconnected: cannot obtain value for tensor Tensor("input_21:0", shape=(?, 224, 224, 3), dtype=float32) at layer "input_21". The following previous layers were accessed without issue: []`
我理解图表是断开的,但我找不到断开的位置。
以下是compile
和fit
函数的代码。
# 编译模型model.compile(optimizer="Adam", loss='binary_crossentropy', metrics=['accuracy'])model.fit([train1, train2, train3], train, validation_data=([test1, test2, test3], ytest))
- 我注释了一些行:
optinal_conv
和optinal_pool
。在concatenate
函数之后应用Conv2D
和MaxPooling2D
会有什么效果?
回答:
我建议查看这个回答 使用Keras函数式API的多输入多输出模型。这里是一种实现方法:
# 3个输入 input0 = tf.keras.Input(shape=(224, 224, 3), name="img0")input1 = tf.keras.Input(shape=(224, 224, 3), name="img1")input2 = tf.keras.Input(shape=(224, 224, 3), name="img2")concate_input = tf.keras.layers.Concatenate()([input0, input1, input2])# 获取3个特征图,大小相同(224, 224)# 预训练模型需要这个input = tf.keras.layers.Conv2D(3, (3, 3), padding='same', activation="relu")(concate_input)# 将其传递给ImageNet模型 vg = tf.keras.applications.VGG16(weights=None, include_top = False, input_tensor = input)# 做任何你想做的事情 gap = tf.keras.layers.GlobalAveragePooling2D()(vg.output)den = tf.keras.layers.Dense(1, activation='sigmoid')(gap)# 构建完整的模型 model = tf.keras.Model(inputs=[input0, input1, input2], outputs=den)