给定一个具有2个隐藏层(分别为5和3维)的DNN(多层感知器的简单情况),我正在训练一个模型来识别OR门。
使用tensorflow learn,似乎它给了我相反的输出,我不知道为什么:
from tensorflow.contrib import learnclassifier = learn.DNNClassifier(hidden_units=[5, 3], n_classes=2)or_input = np.array([[0.,0.], [0.,1.], [1.,0.]])or_output = np.array([[0,1,1]]).Tclassifier.fit(or_input, or_output, steps=0.05, batch_size=3)classifier.predict(np.array([ [1., 1.], [1., 0.] , [0., 0.] , [0., 1.]]))
[out]:
array([0, 0, 1, 0])
如果我采用“老派”的方式,不使用tensorflow.learn
,如下所示,我得到了预期的答案。
import tensorflow as tf# Parameterslearning_rate = 1.0num_epochs = 1000# Network Parametersinput_dim = 2 # Input dimensions.hidden_dim_1 = 5 # 1st layer number of featureshidden_dim_2 = 3 # 2nd layer number of featuresoutput_dim = 1 # Output dimensions.# tf Graph inputx = tf.placeholder("float", [None, input_dim])y = tf.placeholder("float", [hidden_dim_2, output_dim])# With biases.weights = { 'syn0': tf.Variable(tf.random_normal([input_dim, hidden_dim_1])), 'syn1': tf.Variable(tf.random_normal([hidden_dim_1, hidden_dim_2])), 'syn2': tf.Variable(tf.random_normal([hidden_dim_2, output_dim]))}biases = { 'b0': tf.Variable(tf.random_normal([hidden_dim_1])), 'b1': tf.Variable(tf.random_normal([hidden_dim_2])), 'b2': tf.Variable(tf.random_normal([output_dim]))}# Create a modeldef multilayer_perceptron(X, weights, biases): # Hidden layer 1 + sigmoid activation function layer_1 = tf.add(tf.matmul(X, weights['syn0']), biases['b0']) layer_1 = tf.nn.sigmoid(layer_1) # Hidden layer 2 + sigmoid activation function layer_2 = tf.add(tf.matmul(layer_1, weights['syn1']), biases['b1']) layer_2 = tf.nn.sigmoid(layer_2) # Output layer out_layer = tf.matmul(layer_2, weights['syn2']) + biases['b2'] out_layer = tf.nn.sigmoid(out_layer) return out_layer# Construct modelpred = multilayer_perceptron(x, weights, biases)# Define loss and optimizercost = tf.sub(y, pred) # Or you can use fancy cost like:##tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)init = tf.initialize_all_variables()or_input = np.array([[0.,0.], [0.,1.], [1.,0.]])or_output = np.array([[0.,1.,1.]]).T# Launch the graphwith tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(num_epochs): batch_x, batch_y = or_input, or_output # Loop over all data points. # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y}) #print (c) # Now let's test it on the unknown dataset. new_inputs = np.array([[1.,1.], [1.,0.]]) feed_dict = {x: new_inputs} predictions = sess.run(pred, feed_dict) print (predictions)
[out]:
[[ 0.99998868] [ 0.99998868]]
为什么使用tensorflow.learn
时我得到的是相反的输出? 我使用tensorflow.learn
时是否做错了什么?
如何使tensorflow.learn
代码产生与“老派”tensorflow框架相同的结果?
回答:
如果你为steps
指定了正确的参数,你会得到好的结果:
classifier.fit(or_input, or_output, steps=1000, batch_size=3)
结果:
array([1, 1, 0, 1])
steps
是如何工作的
steps
参数指定了你运行训练操作的次数。让我给你一些例子:
- 当
batch_size = 16
和steps = 10
时,你将看到总共160
个样本 - 在你的例子中,
batch_size = 3
和steps = 1000
,算法将看到3000
个样本。实际上,它会1000次看到你提供的相同3个样本
所以,steps
不是epochs的数量,而是你运行训练操作的次数,或者是你看到一个新批次的次数。
为什么允许steps = 0.05
?
在tf.learn
代码中,他们没有检查steps
是否为整数。他们只是运行一个while循环,检查(在这一行):
last_step < max_steps
所以如果max_steps = 0.05
,它将表现得与max_steps = 1
相同(last_step
在循环中递增)。