使用TensorFlow和Keras时关于Keras优化器的问题

目前我正在学习聊bot编程的基础知识,对TensorFlow和Keras几乎没有经验。在编写程序时,我遇到了一个错误消息:AttributeError: module ‘keras.optimizers’ has no attribute ‘TFOptimizer’版本:TensorFlow 2.1.0:Keras 2.3.1:Python 3.7

import nltkfrom nltk.stem import WordNetLemmatizerlemmatizer = WordNetLemmatizer()import jsonimport pickleimport tensorflow from tensorflow import kerasfrom tensorflow.keras import layersfrom tensorflow.keras import optimizersfrom tensorflow.python.keras.optimizers import TFOptimizerimport numpy as npnp.array(object, dtype=object, copy=True, order='K', subok=False, ndmin=0)from keras.models import Sequential, Modelfrom keras.layers import Dense, Activation, Dropout, Lambdaimport tensorflow as tfphysical_devices = tf.config.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True)import randomwords=[]classes = []documents = []ignore_words = ['?', '!']data_file = open('intents.json' , encoding='utf-8').read()intents = json.loads(data_file)

问题:

model = Sequential()model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))model.add(Dropout(0.5))model.add(Dense(64, activation='relu'))model.add(Dropout(0.5))model.add(Dense(len(train_y[0]), activation='softmax'))sgd = keras.optimizers.Adam(lr=0.01, decay=1e-6)model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)model.save('chatbot_model.h5', hist)print("model created")

错误消息:

AttributeError                            Traceback (most recent call last)<ipython-input-25-54920be00d53> in <module>     12 #fitting and saving the model     13 hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)---> 14 model.save('chatbot_model.h5', hist)     15 print("model created")~\anaconda3\envs\tensorflow\lib\site-packages\keras\engine\network.py in save(self, filepath, overwrite, include_optimizer)   1150             raise NotImplementedError   1151         from ..models import save_model-> 1152         save_model(self, filepath, overwrite, include_optimizer)   1153    1154     @saving.allow_write_to_gcs~\anaconda3\envs\tensorflow\lib\site-packages\keras\engine\saving.py in save_wrapper(obj, filepath, overwrite, *args, **kwargs)    447                 os.remove(tmp_filepath)    448         else:--> 449             save_function(obj, filepath, overwrite, *args, **kwargs)    450     451     return save_wrapper~\anaconda3\envs\tensorflow\lib\site-packages\keras\engine\saving.py in save_model(model, filepath, overwrite, include_optimizer)    539                 return    540         with H5Dict(filepath, mode='w') as h5dict:--> 541             _serialize_model(model, h5dict, include_optimizer)    542     elif hasattr(filepath, 'write') and callable(filepath.write):    543         # write as binary stream~\anaconda3\envs\tensorflow\lib\site-packages\keras\engine\saving.py in _serialize_model(model, h5dict, include_optimizer)    161             layer_group[name] = val    162     if include_optimizer and model.optimizer:--> 163         if isinstance(model.optimizer, optimizers.TFOptimizer):    164             warnings.warn(    165                 'TensorFlow optimizers do not 'AttributeError: module 'keras.optimizers' has no attribute 'TFOptimizer'

回答:

kerastensorflow.keras 是Keras API的两种不同实现,因此不应混用。根据Keras API的创建者,用户应该在未来优先使用 tensorflow.keras 实现。

Keras多后端的新版本发布:2.3.0

https://github.com/keras-team/keras/releases/tag/2.3.0

  • 首个支持TF 2的多后端Keras版本
  • 继续支持Theano/CNTK
  • 将是多后端Keras的最后一个主要版本

我们建议您将Keras代码切换到tf.keras。

更多信息请参见 https://stackoverflow.com/a/63377877/5666087

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注