我正在尝试实现一个带有反向传播的非常简单的神经网络。我试图用AND
逻辑运算符来训练这个网络。但是预测结果对我来说不太好。:(
public class ActivationFunction { class func sigmoid(x: Float) -> Float { return 1.0 / (1.0 + exp(-x)) } class func dSigmoid(x: Float) -> Float { return x * (1 - x) } } public class NeuralNetConstants { public static let learningRate: Float = 0.3 public static let momentum: Float = 0.6 public static let iterations: Int = 100000 }public class Layer { private var output: [Float] private var input: [Float] private var weights: [Float] private var dWeights: [Float] init(inputSize: Int, outputSize: Int) { self.output = [Float](repeating: 0, count: outputSize) self.input = [Float](repeating: 0, count: inputSize + 1) self.weights = [Float](repeating: (-2.0...2.0).random(), count: (1 + inputSize) * outputSize) self.dWeights = [Float](repeating: 0, count: weights.count) } public func run(inputArray: [Float]) -> [Float] { input = inputArray input[input.count-1] = 1 var offSet = 0 for i in 0..<output.count { for j in 0..<input.count { output[i] += weights[offSet+j] * input[j] } output[i] = ActivationFunction.sigmoid(x: output[i]) offSet += input.count } return output } public func train(error: [Float], learningRate: Float, momentum: Float) -> [Float] { var offset = 0 var nextError = [Float](repeating: 0, count: input.count) for i in 0..<output.count { let delta = error[i] * ActivationFunction.dSigmoid(x: output[i]) for j in 0..<input.count { let weightIndex = offset + j nextError[j] = nextError[j] + weights[weightIndex] * delta let dw = input[j] * delta * learningRate weights[weightIndex] += dWeights[weightIndex] * momentum + dw dWeights[weightIndex] = dw } offset += input.count } return nextError }}public class BackpropNeuralNetwork { private var layers: [Layer] = [] public init(inputSize: Int, hiddenSize: Int, outputSize: Int) { self.layers.append(Layer(inputSize: inputSize, outputSize: hiddenSize)) self.layers.append(Layer(inputSize: hiddenSize, outputSize: outputSize)) } public func getLayer(index: Int) -> Layer { return layers[index] } public func run(input: [Float]) -> [Float] { var activations = input for i in 0..<layers.count { activations = layers[i].run(inputArray: activations) } return activations } public func train(input: [Float], targetOutput: [Float], learningRate: Float, momentum: Float) { let calculatedOutput = run(input: input) var error = [Float](repeating: 0, count: calculatedOutput.count) for i in 0..<error.count { error[i] = targetOutput[i] - calculatedOutput[i] } for i in (0...layers.count-1).reversed() { error = layers[i].train(error: error, learningRate: learningRate, momentum: momentum) } }}extension ClosedRange where Bound: FloatingPoint { public func random() -> Bound { let range = self.upperBound - self.lowerBound let randomValue = (Bound(arc4random_uniform(UINT32_MAX)) / Bound(UINT32_MAX)) * range + self.lowerBound return randomValue }}
这是我的训练数据,我只希望我的网络能学会简单的AND
逻辑运算符。
我的输入数据:
let traningData: [[Float]] = [ [0,0], [0,1], [1,0], [1,1] ]let traningResults: [[Float]] = [ [0], [0], [0], [1] ]let backProb = BackpropNeuralNetwork(inputSize: 2, hiddenSize: 3, outputSize: 1)for iterations in 0..<NeuralNetConstants.iterations { for i in 0..<traningResults.count { backProb.train(input: traningData[i], targetOutput: traningResults[i], learningRate: NeuralNetConstants.learningRate, momentum: NeuralNetConstants.momentum) } for i in 0..<traningResults.count { var t = traningData[i] print("\(t[0]), \(t[1]) -- \(backProb.run(input: t)[0])") }}
这是我整个神经网络的代码。代码并不是很符合Swift的风格,但我认为首先更重要的是理解神经网络的理论,然后代码会变得更符合Swift的风格。
问题是我的结果完全不对。这是我的结果:
0.0, 0.0 -- 0.2461350.0, 1.0 -- 0.2513071.0, 0.0 -- 0.243251.0, 1.0 -- 0.240923
这是我想要的结果:
0,0, 0,0 -- 0,0000,0, 1,0 -- 0,0051,0, 0,0 -- 0,0051,0, 1,0 -- 0,992
相比之下,Java实现工作得很好…
public class ActivationFunction { public static float sigmoid(float x) { return (float) (1 / (1 + Math.exp(-x))); } public static float dSigmoid(float x) { return x*(1-x); // because the output is the sigmoid(x) !!! we dont have to apply it twice }}public class NeuralNetConstants { private NeuralNetConstants() { } public static final float LEARNING_RATE = 0.3f; public static final float MOMENTUM = 0.6f; public static final int ITERATIONS = 100000;}public class Layer { private float[] output; private float[] input; private float[] weights; private float[] dWeights; private Random random; public Layer(int inputSize, int outputSize) { output = new float[outputSize]; input = new float[inputSize + 1]; weights = new float[(1 + inputSize) * outputSize]; dWeights = new float[weights.length]; this.random = new Random(); initWeights(); } public void initWeights() { for (int i = 0; i < weights.length; i++) { weights[i] = (random.nextFloat() - 0.5f) * 4f; } } public float[] run(float[] inputArray) { System.arraycopy(inputArray, 0, input, 0, inputArray.length); input[input.length - 1] = 1; // bias int offset = 0; for (int i = 0; i < output.length; i++) { for (int j = 0; j < input.length; j++) { output[i] += weights[offset + j] * input[j]; } output[i] = ActivationFunction.sigmoid(output[i]); offset += input.length; } return Arrays.copyOf(output, output.length); } public float[] train(float[] error, float learningRate, float momentum) { int offset = 0; float[] nextError = new float[input.length]; for (int i = 0; i < output.length; i++) { float delta = error[i] * ActivationFunction.dSigmoid(output[i]); for (int j = 0; j < input.length; j++) { int previousWeightIndex = offset + j; nextError[j] = nextError[j] + weights[previousWeightIndex] * delta; float dw = input[j] * delta * learningRate; weights[previousWeightIndex] += dWeights[previousWeightIndex] * momentum + dw; dWeights[previousWeightIndex] = dw; } offset += input.length; } return nextError; }}public class BackpropNeuralNetwork { private Layer[] layers; public BackpropNeuralNetwork(int inputSize, int hiddenSize, int outputSize) { layers = new Layer[2]; layers[0] = new Layer(inputSize, hiddenSize); layers[1] = new Layer(hiddenSize, outputSize); } public Layer getLayer(int index) { return layers[index]; } public float[] run(float[] input) { float[] inputActivation = input; for (int i = 0; i < layers.length; i++) { inputActivation = layers[i].run(inputActivation); } return inputActivation; } public void train(float[] input, float[] targetOutput, float learningRate, float momentum) { float[] calculatedOutput = run(input); float[] error = new float[calculatedOutput.length]; for (int i = 0; i < error.length; i++) { error[i] = targetOutput[i] - calculatedOutput[i]; } for (int i = layers.length - 1; i >= 0; i--) { error = layers[i].train(error, learningRate, momentum); } }}public class NeuralNetwork { /** * @param args the command line arguments */ public static void main(String[] args) { float[][] trainingData = new float[][] { new float[] { 0, 0 }, new float[] { 0, 1 }, new float[] { 1, 0 }, new float[] { 1, 1 } }; float[][] trainingResults = new float[][] { new float[] { 0 }, new float[] { 0 }, new float[] { 0 }, new float[] { 1 } }; BackpropNeuralNetwork backpropagationNeuralNetworks = new BackpropNeuralNetwork(2, 3,1); for (int iterations = 0; iterations < NeuralNetConstants.ITERATIONS; iterations++) { for (int i = 0; i < trainingResults.length; i++) { backpropagationNeuralNetworks.train(trainingData[i], trainingResults[i], NeuralNetConstants.LEARNING_RATE, NeuralNetConstants.MOMENTUM); } System.out.println(); for (int i = 0; i < trainingResults.length; i++) { float[] t = trainingData[i]; System.out.printf("%d epoch\n", iterations + 1); System.out.printf("%.1f, %.1f --> %.3f\n", t[0], t[1], backpropagationNeuralNetworks.run(t)[0]); } } }}
回答:
您对权重进行了不同的初始化。您创建了一个随机值并多次使用它。您需要为数组中的每个权重创建一个随机值:替换
self.weights = [Float](repeating: (-2.0...2.0).random(), count: (1 + inputSize) * outputSize)
为
self.weights = (0..<(1 + inputSize) * outputSize).map { _ in return (-2.0...2.0).random()}
此外,请考虑在Layer.run方法中仅覆盖输入的第一个元素。因此,不是
input = inputArray
您应该这样做:
for (i, e) in inputArray.enumerated() { self.input[i] = e}