我正在使用一个简单的ColumnTransformer,结合了StandardScaler和OneHotEncoder,像这样:
from sklearn.compose import ColumnTransformerfrom sklearn.preprocessing import StandardScalerfrom sklearn.preprocessing import OneHotEncodernum_features = ['num_feat_1', 'num_feat_2', 'num_feat_3']cat_features = ['cat_feat_1', 'cat_feat_2', 'cat_feat_3']ct = ColumnTransformer([ ("scaler", StandardScaler(), num_features), ("onehot", OneHotEncoder(sparse=False, handle_unknown='ignore'), cat_features)], remainder='passthrough') ct.fit(X_train)X_train_trans = ct.transform(X_train)X_test_trans = ct.transform(X_test)
为了映射LinearRegression的系数,我需要使用ct.get_feature_names()
,但我遇到了错误Transformer scaler (type StandardScaler) does not provide get_feature_names
。这是为什么?如何解决这个问题?
回答:
在你的情况下,get_feature_names()
只在onehot编码器上有效,而对于StandardScaler()
,你不会更改转换变量的名称,所以我们遍历转换器,如果get_feature_names
不工作,我们就保留原始特征名称。
使用一个示例数据集:
我们尝试这样做:
tx = ct.get_params()['transformers']feature_names = []for name,transformer,features in tx: try: Var = ct.named_transformers_[name].get_feature_names().tolist() except AttributeError: Var = features feature_names = feature_names + Varfeature_names['num_feat_1', 'num_feat_2', 'num_feat_3', 'x0_a', 'x0_b', 'x1_a', 'x1_b', 'x2_a', 'x2_b']