我想在训练过程中使用MSE来检查我的损失值,如何在每次迭代时获取使用MSE的损失值?谢谢你。
from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_absolute_errordataset = open_dataset("forex.csv")dataset_vector = [float(i[-1]) for i in dataset]normalized_dataset_vector = normalize_vector(dataset_vector)training_vector, validation_vector, testing_vector = split_dataset(training_size, validation_size, testing_size, normalized_dataset_vector)training_features = get_features(training_vector)training_fact = get_fact(training_vector)validation_features = get_features(validation_vector)validation_fact = get_fact(validation_vector)model = MLPRegressor(activation=activation, alpha=alpha, hidden_layer_sizes=(neural_net_structure[1],), max_iter=number_of_iteration, random_state=seed)model.fit(training_features, training_fact)pred = model.predict(training_features)err = mean_absolute_error(pred, validation_fact)print(err)
回答:
在Keras
中没有像回调对象那样的功能,所以你需要循环遍历拟合过程来获取每轮迭代的数据。以下是一个适合你的方法:
from sklearn.neural_network import MLPClassifierfrom sklearn.metrics import mean_absolute_error# 创建一些测试数据X = np.random.random((100, 5))y = np.random.choice([0, 1], 100)max_iter = 500mlp = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=max_iter)errors = []for i in range(max_iter): mlp.partial_fit(X, y, classes=[0, 1]) pred = mlp.predict(X) errors.append(mean_absolute_error(y, pred))
目前这会抛出一个烦人的DeprecationWarning
,但可以忽略。使用这种方法的唯一问题是你必须手动跟踪模型是否已经收敛。个人建议,如果你想使用神经网络,最好使用Keras
而不是sklearn
。