使用Sci-kit learn/python对自然文本进行有效分类

我想让我的分类算法根据一组类别对我的自然语言原始数据进行分类,但前提是它必须达到某个类别的特定阈值准确率(比如80%的准确率),否则我希望我的分类器将该特定原始文本分类为“未分类”类别。我该怎么做呢?

我的示例数据集:

+----------------------+------------+
| Details              | Category   |
+----------------------+------------+
| Any raw text1        | cat1       |
+----------------------+------------+
| any raw text2        | cat1       |
+----------------------+------------+
| any raw text5        | cat2       |
+----------------------+------------+
| any raw text7        | cat1       |
+----------------------+------------+
| any raw text8        | cat2       |
+----------------------+------------+
| Any raw text4        | cat4       |
+----------------------+------------+
| any raw text5        | cat4       |
+----------------------+------------+
| any raw text6        | cat3       |
+----------------------+------------+

这将是我的训练数据,我会将相同的数据分为测试集和训练集

import pandas as pd
import numpy as np
import scipy as sp
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt  
from sklearn.model_selection import train_test_split
data= pd.read_csv('mydata.xls.gold', delimiter='\t',usecols=['Details','Category'],encoding='utf-8')
target_one=data['Category']
target_list=data['Category'].unique()         
x_train, x_test, y_train, y_test = train_test_split(data.Details, data.NUM_CATEGORY, random_state=42)
vect = CountVectorizer(ngram_range=(1,2))
#converting traning features into numeric vector
X_train = vect.fit_transform(x_train.values.astype('U'))
#converting training labels into numeric vector
X_test = vect.transform(x_test.values.astype('U'))
start = time.clock()
mnb = MultinomialNB(alpha =0.13)
mnb.fit(X_train,y_train)
result= mnb.predict(X_test)
print (time.clock()-start)
# mnb.predict_proba(x_test)[0:10,1]
accuracy_score(result,y_test)

我该如何继续?分类器是否需要设置任何参数?提前感谢。


回答:

您可以使用predict_proba的结果,并创建一个带有columns = target_list的pandas数据框,然后使用maxidxmax来找出测试集中每个元素的最高概率类别。一旦完成,您可以使用布尔掩码和广播将低于阈值的类别设置为“未分类”

import pandas as pd
df = pd.DataFrame(clf.predict_proba(X_test), columns=target_list)
res_df = pd.DataFrame()
res_df['max_prob'] = df.max(axis=1)
res_df['max_prob_cat'] = df.idxmax(axis=1)
res_df.loc[res_df['max_prob'] < .8, 'max_prob_cat'] = 'unclassified'

df将如下所示

              cat1          cat2          cat3          cat4
0     1.091685e-06  2.257549e-04  9.994661e-01  3.070665e-04
1     2.288312e-02  9.752170e-01  1.783878e-03  1.159706e-04
2     1.980685e-01  3.494765e-01  4.416871e-01  1.076788e-02
3     2.205478e-07  9.999601e-01  3.276864e-05  6.920325e-06
4     2.736805e-03  9.795997e-01  1.718200e-02  4.815429e-04

res_df将如下所示

      max_prob  max_prob_cat
0     0.999466          cat3
1     0.975217          cat2
2     0.441687  unclassified
3     0.999960          cat2
4     0.979600          cat2
5     0.999956          cat2
6     0.998864          cat3
7     0.996888          cat3
8     0.999422          cat1
9     0.994412          cat3
10    0.954508          cat2
11    0.999999          cat2

Related Posts

L1-L2正则化的不同系数

我想对网络的权重同时应用L1和L2正则化。然而,我找不…

使用scikit-learn的无监督方法将列表分类成不同组别,有没有办法?

我有一系列实例,每个实例都有一份列表,代表它所遵循的不…

f1_score metric in lightgbm

我想使用自定义指标f1_score来训练一个lgb模型…

通过相关系数矩阵进行特征选择

我在测试不同的算法时,如逻辑回归、高斯朴素贝叶斯、随机…

可以将机器学习库用于流式输入和输出吗?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

在TensorFlow中,queue.dequeue_up_to()方法的用途是什么?

我对这个方法感到非常困惑,特别是当我发现这个令人费解的…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注