我有一段代码尝试使用非线性SVM(RBF核)。
raw_data1 = open("/Users/prateek/Desktop/Programs/ML/Dataset.csv")raw_data2 = open("/Users/prateek/Desktop/Programs/ML/Result.csv")dataset1 = np.loadtxt(raw_data1,delimiter=",")result1 = np.loadtxt(raw_data2,delimiter=",")clf = svm.NuSVC(kernel='rbf')clf.fit(dataset1,result1)
然而,当我尝试拟合时,出现了以下错误:
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/prateek/Desktop/Programs/ML/lib/python2.7/site-packages/sklearn/svm/base.py", line 193, in fit fit(X, y, sample_weight, solver_type, kernel, random_seed=seed) File "/Users/prateek/Desktop/Programs/ML/lib/python2.7/site-packages/sklearn/svm/base.py", line 251, in _dense_fit max_iter=self.max_iter, random_seed=random_seed) File "sklearn/svm/libsvm.pyx", line 187, in sklearn.svm.libsvm.fit (sklearn/svm/libsvm.c:2098)ValueError: specified nu is infeasible
导致此错误的原因是什么?
回答:
如文档中所指出的,nu
参数是“训练误差的上限和支持向量的下限”。
因此,每当你尝试拟合数据并且无法满足这个界限时,优化问题就会变得不可行。这就是你得到的错误原因。
事实上,我从1.
到0.1
(以十进制单位递减)进行了循环测试,仍然得到错误,然后尝试0.01
时,没有出现任何问题。但当然,你应该检查使用该值拟合模型后的结果,检查预测的准确性是否可以接受。
更新:实际上我很好奇,分割了你的数据集进行验证,输出结果是69%的准确率(我还认为你的训练集可能非常小)
为了重现性,这里是我进行的快速测试:
from sklearn import svmimport numpy as np from sklearn.cross_validation import train_test_splitfrom sklearn.metrics import accuracy_scoreraw_data1 = open("Dataset.csv")raw_data2 = open("Result.csv")dataset1 = np.loadtxt(raw_data1,delimiter=",")result1 = np.loadtxt(raw_data2,delimiter=",")clf = svm.NuSVC(kernel='rbf',nu=0.01)X_train, X_test, y_train, y_test = train_test_split(dataset1,result1, test_size=0.25, random_state=42)clf.fit(X_train,y_train)y_pred = clf.predict(X_test)accuracy_score(y_test, y_pred, normalize=True, sample_weight=None)