我编写了一些初学者代码,使用正规方程计算简单线性模型的系数。
# Modulesimport numpy as np# Loading data setX, y = np.loadtxt('ex1data3.txt', delimiter=',', unpack=True)data = np.genfromtxt('ex1data3.txt', delimiter=',')def normalEquation(X, y): m = int(np.size(data[:, 1])) # This is the feature / parameter (2x2) vector that will # contain my minimized values theta = [] # I create a bias_vector to add to my newly created X vector bias_vector = np.ones((m, 1)) # I need to reshape my original X(m,) vector so that I can # manipulate it with my bias_vector; they need to share the same # dimensions. X = np.reshape(X, (m, 1)) # I combine these two vectors together to get a (m, 2) matrix X = np.append(bias_vector, X, axis=1) # Normal Equation: # theta = inv(X^T * X) * X^T * y # For convenience I create a new, tranposed X matrix X_transpose = np.transpose(X) # Calculating theta theta = np.linalg.inv(X_transpose.dot(X)) theta = theta.dot(X_transpose) theta = theta.dot(y) return thetap = normalEquation(X, y)print(p)
使用此处找到的小数据集:
http://www.lauradhamilton.com/tutorial-linear-regression-with-octave
我使用上述代码得到的系数是: [-0.34390603; 0.2124426 ]
,而不是: [24.9660; 3.3058]
。谁能帮我解释一下我哪里做错了?
回答:
你的实现是正确的。你只是交换了 X
和 y
(仔细看他们是如何定义 x
和 y
的),这就是你得到不同结果的原因。
调用 normalEquation(y, X)
会得到 [ 24.96601443 3.30576144]
,正如它应该的那样。